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Preface

It has been our academic endeavour to cater to the needs of the students since the introduction
of credit based system by the University of Mumbai where the focus has been shifted from
teacher centric to learner-centric.
The two papers of F.Y.B.Sc Mathematics as per the new syllabi are:

Semester I Semester II

Paper I Calculus I Calculus II
Paper II Algebra I Discrete Mathematics

Keeping in mind the need to develop among students an ability to understand and apply theo-
retical concepts, in papers I and II practicals have been prescribed.

In a meeting of the Board of Studies in Mathematics held along with the members of the syllabus
restructuring committee, it was decided to frame the Practical Question sets as per the guide-
lines given in the revised syllabus in each paper of Mathematics of F.Y./S.Y./T.Y. B.Sc./B. A.
This is in tune with a circular in which the University Grants Commission had recommended
that the Board of Studies in each subject should prepare a Question bank for each course.
The following committee was formed and entrusted with this collective responsibility for F.Y.B.Sc/B.A.

Name College
Mrs. Anuradha Namjoshi (Chairperson) Sathaye College
Prof. Sangeeta Joshi Smt C.H.M. College ,Ulhasnagar
Prof. Urmila Pillai Smt C.H.M. College ,Ulhasnagar
Dr. Rajesh Raut RD & SH National college and S WA Science college.
Prof. Amit Gawde Patkar and Varde College.
Prof. Salil Savarkar Smt C.H.M. College ,Ulhasnagar
Prof. Komal Wategaonkar Royal College of Arts, science and commerce.
Prof. Bhakti Velankar NES Ratnam college.
Prof. Pooja Rochani Smt C.H.M. College, Ulhasnagar.
Prof. Pramod Tohake MD College.

The committee focused on the following aspects:

(1) Uniform notations and definitions in the list of reference books in the syllabus.

(2) Collating relevant questions for the revised syllabus from recommended books.

0.0
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(3) Preparing a comprehensive practical question sets consisting of objective and descriptive
questions which streamlines and structures the syllabi.

(4) Providing a ready reference for teachers and students alike, to pinpoint the highlights of
the revised syllabi.

(5) The practical on miscellaneous theory questions consists of core theorems and problems
based on them have been compiled from all reference books in the syllabi.

The aim is to achieve the above objectives during the practical sessions.

These suggested practicals is a combined effort of the committee members and teachers of the
colleges affiliated to University of Mumbai. Numerous exercises are given under each section
for the students to practice and test his/her comprehension and ability. While many of these
problems may be covered during practical, we expect the student to work out the remaining
ones. We hope these practical sets provide students with a good grounding in the fundamentals
in each topic.

We thank Prof Deore,Chairman of B.O.S. in mathematics and Dr. Santosh Shende Convenor
of the Syllabus Committee for making valuable suggestions and discussing important aspects of
the syllabi with the committee members.

We also thank Prof. Veena Bhakta Kamat for coordinating and organizing the above activity
that shaped the manual as it is today.

We appreciate inputs given by Prof. Sunil Chokhani and Dr. Manisha Acharya which set this
work possible as it is till the end.

We are extremely grateful to Prof. Balmohan Limaye, Prof. Sudhir Ghorpade and Prof. Vinayak
Kulkarni for their valuable insights, suggestions and comments.

A special mention to Dr. Abhaya Chitre, Member of B.O.S. in Mathematics for accomplishing
this herculean task of compiling and putting this together in the present form.

Finally, we take full responsibility for any error that may have inadvertently crept into this hand
book and would appreciate if any such errors are brought to our notice.

.......
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SCHEME OF EVALUATION

The performance of the student is evaluated as follows:

(I) Internal Evaluation of 25 marks:
F.Y.B.Sc.

(i) One Class Test of 20 marks to be conducted during Practical session.
Paper pattern of the Test:

Q1: Definitions / Fill in the blanks / True of False with Justification (04 Marks).

Q2: Multiple choice 5 questions (10 marks: 5× 2).

Q3: Attempt any 2 from 3 descriptive questions (06 Marks: 2× 3).

(ii) Active participation in routine class: 05 Marks.

F.Y.B.A.

(i) One Class Test of 20 marks to be conducted during Tutorial session.
Paper pattern of the Test:

Q1: Definitions / Fill in the blanks / True of False with Justification (04 Marks).

Q2: Multiple choice 5 questions (10 marks: 5× 2).

Q3: Attempt any 2 from 3 descriptive questions (06 Marks: 2× 3).

(ii) Journal: 05 Marks.

(II) Semester End Theory Examinations: There will be a Semester-end external The-
ory examination of 75 marks for each of the course USMT101/UAMT101, USMT102 of
Semester I and USMT201/UAMT201, USMT202 of Semester II to be conducted by the
college.

1. Duration: The examinations shall be of 2 and 1
2 hours duration.

2. Theory Question Paper Pattern:

a) There shall be FOUR questions. The first three questions Q1, Q2, Q3 shall be of
20 marks, each based on the units I, II, III respectively. The question Q4 shall
be of 15 marks based on the entire syllabus.

b) All the questions shall be compulsory. The questions Q1, Q2, Q3, Q4 shall have
internal choices within the questions. Including the choices, the marks for each
question shall be 25-27.

c) The questions Q1, Q2, Q3, Q4 may be subdivided into sub-questions as a, b, c,
d & e, etc and the allocation of marks depends on the weightage of the topic.

(III) Semester End Examinations Practicals:
At the end of the Semesters I & II Practical examinations of three hours duration and 100
marks shall be conducted for the courses USMTP01, USMTP02.
In semester I, the Practical examinations for USMT101 and USMT102 are held together
by the college.
In Semester II, the Practical examinations for USMT201 and USMT202 are held together
by the college.

Paper pattern: The question paper shall have two parts A and B.
Each part shall have two Sections.

0.0
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Section I Objective in nature: Attempt any Eight out of Twelve multiple choice questions
( 04 objective questions from each unit) (8× 3 = 24 Marks).

Section II Problems: Attempt any Two out of Three ( 01 descriptive question from each
unit) (8× 2 = 16 Marks).

Practical Part A Part B Marks duration
Course out of

USMTP01 Questions Questions 80 3 hours
from USMT101 from USMT102

USMTP02 Questions Questions 80 3 hours
from USMT201 from USMT202

Marks for Journals and Viva:
For each course USMT101/UAMT101, USMT102, USMT201:

1. Journal: 10 marks (5 marks for each journal).

2. Viva: 10 marks.

Each Practical of every course of Semester I and II shall contain at least 10 objective
questions and at least 6 descriptive questions.
A student must have a certified journal before appearing for the practical examination.
In case a student does not posses a certified journal he/she will be evaluated for 80 marks.
He/she is not qualified for Journal + Viva marks.
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Chapter 1

(USMT 101) Calculus I

1.1 Practical 1.1: Algebraic and Order Properties of Real
Numbers and Inequalities

1.1.1 Prerequisite of Practical 1.1

(1) Axioms for addition

(i) Closure property: R is closed under addition.
That is, x, y ∈ R =⇒ x+ y ∈ R.

(ii) Addition is associative: x+ (y + z) = (x+ y) + z, for all x, y, z ∈ R.

(iii) Addition is commutative: x+ y = y + x, for all x, y ∈ R.

(iv) Existence of an additive identity:
There exists an element 0 in R such that x+ 0 = x, for all x ∈ R.

(v) Existence of an additive inverse:
For each x ∈ R there exists x′ in R such that x+ x′ = 0.

(2) Axioms for multiplication

(i) Closure property: R is closed under multiplication.
That is, x, y ∈ R =⇒ xy ∈ R.

(ii) Multiplication is associative: x(yz) = (xy)z, for all x, y, z ∈ R.
(iii) Multiplication is commutative: xy = yx, for all x, y ∈ R.
(iv) Existence of a multiplicative identity:

There exists an element 1 in R such that x · 1 = x, for all x ∈ R.
(v) Existence of multiplicative inverse:

For each x ∈ R, x 6= 0, there exists an element x∗ in R such that xx∗ = 1.

(3) Axioms about distributivity of multiplication over addition Multiplication is dis-
tributive over addition:

x(y + z) = xy + xz ∀ x, y, z ∈ R.

1.1



14 CHAPTER 1. (USMT 101) CALCULUS I

(4) Elementary Results

(i) Additive identity is unique.

(ii) Multiplicative identity is unique.

(iii) Every real number has unique additive inverse. (The unique additive inverse of x is
denoted by −x.)

(iv) Every nonzero real number has unique multiplicative inverse. (The unique multi-

plicative inverse of x 6= 0 is denoted by x−1 or by
1

x
)

(v) (i) The unique additive inverse of x is denoted by −x.

(ii) The unique multiplicative inverse of non-zero x is denoted by x−1 or by
1

x
.

(vi) Let a, b ∈ R. Then

(i) there is exactly one x ∈ R such that a+ x = b.

(ii) if a 6= 0, there is exactly one x ∈ R such that ax = b.

(5) If a, b, c ∈ R, then using only the algebraic properties, we can prove the following.

(i) −(−a) = a

(ii) (a−1)−1 = a

(iii) a0 = 0 = 0a

(iv) (−a)b = −(ab) = a(−b)
(v) (−a)(−b) = ab

(vi) a(b− c) = ab− ac

(vii) If ab = 0 then a = 0 or b = 0

(viii) If a 6= 0, b 6= 0, then (ab)−1 = b−1a−1

(ix) If a 6= 0, then (−a)−1 = −a−1

(x) −0 = 0

(xi) 1−1 = 1

(6) Order properties of R:
We shall assume that there exists a non-empty subset R+ ⊂ R, called the set of positive
real numbers, which satisfies the following properties:

(I) If x, y ∈ R+ then x+ y ∈ R+.

(II) If x, y ∈ R+ then xy ∈ R+.

(III) Trichotomy Law: For every x ∈ R, exactly one of the following is true:
x = 0 or x ∈ R+ or −x ∈ R+.

(Note: R+ = {x ∈ R : x > 0}.)

(7) Order relation on R:
For x, y ∈ R, define x to be less than y, and write x < y, if y − x ∈ R+.
Sometimes, we write y > x in place of x < y and say that y is greater than x.

Definition of symbols ≤ and ≥ called less than or equal to and greater than or equal
to respectively, as follows:

x ≤ y if either x < y or x = y.
y ≥ x if x ≤ y.

(Note: Law of Trichotomy can also be stated as follows:
For x, y ∈ R, exactly one of the three relations holds : x = y, x < y, y < x).

(8) Elementary Results of order relation on R :
If x, y, z are real numbers, then



15

(i) x < 0 =⇒ −x > 0

(ii) x < y and y < z =⇒ x < z

(iii) x < y =⇒ x+ z < y + z

(iv) x < y and z > 0 =⇒ xz < yz

(v) x < y and z < 0 =⇒ xz > yz

(vi) x > 0, y < 0 =⇒ xy < 0

(vii) 1 > 0.

(viii) If x > 0, then x−1 > 0 and if x < 0
then x−1 < 0.

(ix) If 0 < x < y, then 0 < y−1 < x−1.

(x) If x < y < 0, then y−1 < x−1 < 0.

(9) Given any a ∈ R and n ∈ N, the nth power of a (denoted by an ) is defined to be the
product a · · · a of a with itself taken n times.

If a 6= 0, then a0 = 1 and a−n =

(
1

a

)n
.

Thus integral powers of all nonzero real numbers are defined.
Following properties can be proved using the algebraic properties and the order properties
of R.

(i) (xy)n = xnyn for all n ∈ Z and x, y ∈ R ( with xy 6= 0 if n ≤ 0).

(ii) (xm)n = xmn and xm+n = xmxn for all m,n ∈ Z and x ∈ R (with x 6= 0 if m ≤ 0 or
n ≤ 0).

(iii) If n ∈ N and x, y ∈ R with 0 ≤ x < y, then xn < yn.

The first two properties above are called Laws of exponents or the Laws of indices for
integral powers.

(10) (The proof of the following statement is not to be expected from the students)
Given any n ∈ N and a ∈ R with a ≥ 0, there exists a unique b ∈ R such that b ≥ 0 and
bn = a.
Using this theorem, root of a non-negative real number is defined.
For n ∈ N and a ∈ R with a ≥ 0, the nth root of a is defined as the unique real number
b such that b ≥ 0 and bn = a. We denote this real number by n

√
a or by a

1
n . Thus a

1
n ≥ 0

for all a ≥ 0.
In case n = 2, we write

√
a instead of 2

√
a.

The following properties of the nth roots can be proved.

(i) (xy)
1
n = x

1
n y

1
n for all n ∈ Z and x, y ∈ R ( with xy 6= 0 if n ≤ 0).

(ii) (x
1
m )

1
n = x

1
mn and x

1
m

+ 1
n = x

1
mx

1
n for all m,n ∈ Z and x ∈ R (with x 6= 0 if m ≤ 0

or n ≤ 0).

(iii) If n ∈ N and x, y ∈ R with 0 ≤ x < y, then x
1
n < y

1
n .

(11) Given any r ∈ Q, r =
m

n
, where m,n ∈ Z with n > 0, ar is defined as ar = (am)

1
n for

a ∈ R, with a > 0.
Thus rational powers of positive real numbers are defined.

(12) For negative real numbers, some non-integral rational powers are not defined in

R. For example, (−1)
1
2 cannot equal any b ∈ R as b2 ≥ 0.

1.1
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(13) If n is odd and a ∈ R with a > 0 then (−a)
1
n = −(a

1
n ).

Hence, for x ∈ R, x 6= 0, the rth power xr is defined whenever r ∈ Q, r =
m

n
where

m ∈ Z, n ∈ N with n odd.

(14) If r is any positive rational number, then 0r = 0 and 00 is not defined.

(15) If x is a real number, the absolute value of x is a nonnegative real number, denoted by
|x|, defined as follows:

|x| :=
{
x if x ≥ 0,
−x if x < 0.

Geometrically, |x| is the distance of x from zero.

(16) Properties of absolute value For x, y ∈ R, the following properties hold.

(i) |x| ≥ 0.

(ii) |x| = 0 ⇐⇒ x = 0

(iii) |x| = | − x|.
(iv) |x| = max{x,−x}.
(v) −|x| ≤ x ≤ |x|.

(vi) |xy| = |x||y|.

(vii) If y 6= 0 then

∣∣∣∣1y
∣∣∣∣ =

1

|y|
.

(viii) If y 6= 0 then

∣∣∣∣xy
∣∣∣∣ =
|x|
|y|
.

(ix) If r ∈ R, r > 0, then |x| ≤ r if and only if
−r ≤ x ≤ r.

(x) |x+ y| ≤ |x|+ |y|.

(xi) |x− y| ≤ |x|+ |y|.

(xii) |x− y| ≥
∣∣∣|x| − |y|∣∣∣.

(17) (i) |an − bn| ≤ (n− 1)Mn|a− b|, where M = max{|a|, |b|}.
(ii)

∣∣a1/n − b1/n
∣∣ ≤ |a− b|1/n, provided a ≥ 0 and b ≥ 0.

(18) For a, b ∈ R the Arithmetic Mean (A.M.) of a and b is
a+ b

2
.

For a, b ∈ R+, the Geometric Mean (G.M.) of a and b is
√
a ∗ b.

If a, b ∈ R+ and A.M. and G.M. are their arithmetic and geometric mean respectively then
A.M. ≥ G.M.

If a1, a2, · · · , an are non-negative real numbers, then
a1 + a2 + · · ·+ an

n
≥ (a1a2 · · · an)

1
n .

(19) Cauchy-Schwarz Inequality
If a1, a2, · · · , an and b1, b2, · · · , bn are any real numbers then(

n∑
k=1

akbk

)2

≤

(
n∑
k=1

ak
2

)(
n∑
k=1

bk
2

)
.

That is,

(
n∑
k=1

akbk

)
≤

(
n∑
k=1

ak
2

) 1
2
(

n∑
k=1

bk
2

) 1
2

.
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1.1.2 PRACTICAL 1.1

(A) Objective Questions

Choose correct alternative in each of the following:

(A) Choose correct alternative in each of the following:

(1) The multiplicative identity in R is

(a) 0 (b) 1 (c) −1 (d) 3

(2) The additive identity in R is

(a) 1 (b) 2 (c) −1 (d) 0

(3) For x ∈ R, additive inverse of x

(a) Always exists

(b) Exists only if x 6= 0.

(c) Exists only if x > 0

(d) None of these.

(4) For x ∈ R, multiplicative inverse of x

(a) Always exists

(b) Exists only if x 6= 0

(c) Exists only if x > 0.

(d) None of these.

(5) The multiplicative inverse of non-zero real number x is denoted by

(a) x−1 (b) −x (c) −(−x) (d)
√
x

(6) The additive inverse of non-zero real number x is denoted by

(a) x−1 (b) −x (c) −(−x) (d)
√
x

(7) The existence of the additive identity in R is expressed using equation

(a) x ∗ 1 = x (b) x+ 0 = x (c) x ∗ 0 = 0 (d) x ∗ 1

x
= 1

(8) If 0, 0′ ∈ R are such that x+ 0 = 0′ + x, ∀x ∈ R then

(a) x = 0

(b) 0 = 0′
(c) 0 < 0′

(d) None of the above.

(9) The existence of multiplicative identity in R is expressed for all x 6= 0, x ∈ R, using
equation

(a) x ∗ 1 = x (b) x+ 0 = x (c) x ∗ 0 = 0 (d) x ∗ 1

x
= 1

(10) For x ∈ R, the additive inverse of −x is

1.1
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(a) does not exist. (b) x (c) −x (d) None of these.

(11) For x ∈ R, the multiplicative inverse of
x

2

(a) exists only if x 6= 0.

(b) does not exist.

(c) always exists in R
(d) None of these.

(12) For x, y, z ∈ R, if we have x+ y = x+ z then

(a) y + z = 0

(b) y = z only if x 6= 0

(c) y = z

(d) None of these.

(13) For x, y, z ∈ R, if we have x ∗ y = x ∗ z then

(a) y = z

(b) y = z only if x 6= 0

(c) x = 0

(d) None of these.

(14) For x, y, z ∈ R, the distributivity of multiplication over addition is

(a) (x+ y)z = xz + yz

(b) (xy) + z = (x+ z)(y + z)

(c) (x+ y)z = xz + yz

(d) None of these.

(15) For x, y, z ∈ R, if we have xy < xz then

(a) y < z (b) y > z (c) y = z (d) if x > 0 then
y < z.

(16) For x, y ∈ R, if we have 0 < x < y then

(a) x2 < y2 (b) x2 > y2 (c) xy = 0 (d) None of these.

(17) For a, b ∈ R, the equation x+ a = b has

(a) unique solution.

(b) no solution.

(c) many solutions

(d) None of these.

(18) For a, b ∈ R, the equation x ∗ a = b has

(a) infinitely many solutions

(b) may not have a solution.

(c) exactly one solution.

(d) None of these.

(19) For a, b ∈ R with a 6= 0, the equation ax = b has

(a) infinitely many solutions

(b) may not have a solution.

(c) exactly one solution.

(d) None of these.

(20) For a, b ∈ R, if ab = 0 then
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(a) a = 0 and b = 0

(b) a+ b = 0

(c) a = 0 or b = 0

(d) None of these.

(21) The set {x ∈ R : |x2 − 8| = 17} is equal to

(a) empty set (b) {5} (c) {−5, 5} (d) None of these.

(22) Select the statement from below which is true for each x ∈ R.

(a) x < x2

(b) |x2| = |x|2
(c) |x| < max{x,−x}

(d) x > 0 =⇒ 1

x
< 0.

(23) The statement |x| = max{x,−x} is

(a) true for each x ∈ R.
(b) false for some x ∈ R.

(c) false for each positive x ∈ R.
(d) true only for each negative x ∈ R.

(24) For a, b ∈ R, we have |a+ b| = |a|+ |b| if and only if

(a) a = ±b (b) 0 < b < a (c) a2 + b2 = 0 (d) 0 ≤ ab..

(25) ∗ Select the statement from below which is true for each x, y ∈ R

(a) |x+ y| =
∣∣∣|x|+ |y|∣∣∣

(b) |x+ y| ≥ |x|+ |y|
2

(c)
√
|x+ y| ≤

√
|x|+

√
|y|

(d) |x+ y|2 ≤ |x|2 + |y|2.

(26) If a > 0 and x := 4a, y := 6a, z := 9a, then the geometric mean of x, y, z is

(a) 24a (b) 36a (c) 216a3 (d) 6a.

(27) If a > 1 then the arithmetic mean of a and
1

a
is

(a) greater than 2.

(b) greater than
2

a
.

(c) greater than 2a.

(d) equal to 2.

(28) Let a, b be positive real numbers and A,G be the arithmetic mean and the geometric
mean of a, b respectively. Then

(a) G2 ≤ A2

(b)
1

G2
≤ 1

A2

(c)
A+G

2
≤
√
AG

(d)
√
G ≤

√
A.

(29) ∗ Each element of the following set is an irrational number

1.1
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(a) {
√

2, π, e}
(b) {sin

(
nπ
4

)
: n ∈ N}

(c) {(
√

2)n : n ∈ N}
(d) {

√
2√
n

: n ∈ N}.

(30) Let a, b be positive rational numbers. Let A,G be the arithmetic mean and the
geometric mean of a, b respectively. Then the following pair is a pair of rational
numbers.

(a) G and A.

(b)
A+G2

2
and
√

4A2 − 2G2

(c)
A+G

2
and
√
AG

(d)
A2 +G2

2
and
√
A+G.

(B) Descriptive Questions

(1) For x, y, z, w ∈ R, prove the following.

(i) If x < y then x <
x+ y

2
< y.

(ii) 0 < x < 1 =⇒ 0 < x2 < x < 1

(iii) If 0 < x < y then
√
x <
√
y and x <

√
xy < y.

(iv) If x, y are positive then x < y ⇐⇒ xn < yn ∀ n ∈ N. (Hint: Use induction method)

(v) xy < 0 =⇒ (x > 0 and y < 0) OR (x < 0 and y > 0)

(vi) x < y, z < w then xw + yz < xz + yw.

(vii) |x+ y| = |x|+ |y| if and only if xy ≥ 0 for all x, y ∈ R.

(2) Describe the set of all real numbers x satisfying the given inequality.

(i) x2 > 3x+ 4.

(ii) |4x− 5| ≤ 13.

(iii) |x− 17|= |2x+ 8|
(iv) |x2 − 8|= 17

(v) 1
x < x

(vi) |x−8|= 3 |x−2|
(vii) |x−3| − |x+ 6|=5

(viii) 1 < x2 < 4

(3) For x, y, z ∈ R show that x < y < z ⇐⇒ |x− y|+ |y − z| = |x− z| .

(4) If a, b, c ∈ R+, use arithmetic and geometric mean inequality and prove the following
statements.

(i) (a+ b) (a+ c) (b+ c) ≥ 8 abc. (Hint: First apply AM-GM inequality to a and b then
to b and c and then to a and c. )

(ii) a+ 1
a ≥ 2. (Hint: apply AM-GM inequality to a and 1

a . )

(iii) a2 + b2 + c2 ≥ ab + bc + ac. (Hint: Apply AM-GM inequality to a2, b2 then to b2, c2

and then to .....

(iv) a
b + b

a ≥ 2. (Hint: Apply AM-GM inequality to
a

b
and

b

a
.)

(v) a3 + b3 + c3 ≥ a2b + b2c + c2a. (Hint: apply AM-GM inequality to a3, a3, b3 then to
b3, b3, c3 and then to c3, c3, a3. )
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(vi)
a2

b2
+
b2

c2
+
c2

a2
≥ b

a
+
b

c
+
c

a
. (Hint: apply AM-GM inequality to

a2

b2
,
b2

c2
then to

b2

c2
,
c2

a2

and then to
c2

a2
,
a2

b2
. )

(5) Use Cauchy-Schwartz inequality and prove the following statement.
If a, b, c ∈ R are positive such that a+ b+ c ≤ 3 then 1

a + 1
b + 1

c ≥ 3. (Hint Apply Cauchy

Schwarz Inequality to {
√
a,
√
b,
√
c} and

{
1√
a
,

1√
b
,

1√
c

}
).

(6) Match the following:

(a1) |x| < 3 (b1) 4 < x < 6

(a2) |x− 1| < 3 (b2) − 3 < x < 3

(a3) |3− 2x| < 1 (b3) x > 3 or x < −1

(a4) |1 + 2x| ≤ 1 (b4) x > 2

(a5) |x− 1| > 2 (b5) − 2 < x < 4

(a6) |x+ 2| ≥ 5 (b6) −
√

3 ≤ x ≤ −1 or 1 ≤ x ≤
√

3

(a7) |5− x−1| < 1 (b7) 1 < x < 2

(a8) |x− 5| < |x+ 1| (b8) x ≤ −7 or x ≥ 3

(a9) |x2 − 2| ≤ 1 (b9)
1

6
< x <

1

4
(a10) x < x2 − 12 < 4x (b10) − 1 ≤ x ≤ 0

(7) Determine whether each of the following is true or false. In each case give a reason for
your decision.

(i) x < 5 implies |x| < 5

(ii) |x− 5| < 2 implies 3 < x < 7

(iii) |1 + 3x| ≤ 1 implies x ≥ −3
2

(iv) There is no real x for which |x− 1| = |x− 2|

(C) Some More Descriptive Questions

(1) For x, y, z, w ∈ R, prove the following :

(i) x2 + y2 = 0⇐⇒ x = 0 and y = 0.

(ii) If z, w are positive then x
z <

y
w ⇐⇒ xw < yz and x

z <
y
w =⇒ x

z <
x+y
z+w < y

w .

(iii) If 0 ≤ x < y then x2 ≤ xy < y2.

(iv) 2 |x| |y| ≤ x2 + y2.

(v)
√
|x+ y| ≤

√
|x|+

√
|y| for all x, y ∈ R.

(2) Solve the following equations, justifying each step by referring to an appropriate property
or theorem.

1.1
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(i) 3x+ 2 = 11

(ii) x2 = 3x

(iii) 2x2 − 8 = 10

(iv) (x− 3) (x+ 1) = 0

(3) Suppose x, y, a, b, ε are real numbers such that ε > 0, |x−a| < ε and |y− b| < ε. Show that
|xy − ab| < (|a|+ |b|)ε+ ε2.

(4) Suppose a ∈ R such that 0 < a < 1 and b := 1−
√

1− a. Prove that 0 < b < a.

(5) Suppose x, a, ε ∈ R such that 0 < a
2 < x and |x− a| < ε. Prove that

∣∣ 1
x −

1
a

∣∣ ≤ 2ε
a2
.

(6) Suppose x, y are positive real numbers. Prove that x < y if and only if
√
x <
√
y.

(7) Suppose that for each i ∈ {1, 2, · · · , n}, let xi, λi ∈ R be such that |xi| < 1, λi ≥ 0 with∑n
i=1 λi = 1 then show that

∑n
i=1 λixi < 1.

(8) Let n ∈ N and each r1, r2, · · · , rn ∈ R is greater than −1. If G is the geometric mean of
(1 + r1), (1 + r2), · · · , (1 + rn) and r := G− 1 then prove that

(1 + r1)× (1 + r2)× · · · × (1 + rn) = (1 + r)n.

Hence find the average compound rate of interest per annum on one time investment of
rupees 10000 fetching 8% compound rate of interest for first 3 years, 12% compound rate
of interest for next 2 years and 10% compound rate of interest for last 4 years.

(9) Use arithmetic and geometric mean inequality and prove the following statement. 2(1 −
x)(1 + x)(1 + x) ≤ 64

27 ∀ x ∈ [0, 1] and reaches this maximum value for x = 1
3 .

(10) If x > −1 then prove that (1 + x)n ≥ 1 + nx ∀ n ∈ N.

(11) Suppose x, a ∈ R are positive and y := 1
2

(
x+ a

x

)
. Prove that y ≥ 1

2

(
y + a

y

)
≥
√
a.

(12) Prove that
(
1 + 1

n

)n ≤ (1 + 1
n+1

)n+1
∀ n ∈ N.

(13) If L is the perimeter and A is the area of rectangle R then prove that L2 ≥ 16A. Further
prove that L2 = 16A if and only if R is square.

(14) Prove that among all rectangles with fixed perimeter L, square has maximum area.

(15) Prove that among all rectangles with fixed area A, square has minimum perimeter.

(16) Use Cauchy-Schwartz inequality and prove given statement.

(i) If a, b, c ∈ R are positive such that a+ b+ c ≤ 3 then 1
a + 1

b + 1
c ≥ 3.

(ii) Given any n ∈ N, if each x1, x2, · · · , xn ∈ R is positive then (
∑n

i=1 xi)
(∑n

i=1
1
xi

)
≥

n2.

(iii) If (x1, y1), (x2, y2) are points on unit circle then |x1x2 + y1y2| ≤ 1.

(iv) Given any n ∈ N, if x1, x2, · · · , xn ∈ R and y1, y2, · · · , yn ∈ R then(
n∑
i=1

(xi + yi)
2

) 1
2

≤

(
n∑
i=1

x2
i

) 1
2

+

(
n∑
i=1

y2
i

) 1
2

.
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(v) For each n ∈ N and each x ∈ R we have |1+x+x2+· · ·+xn−1| ≤
√
n(1 + x2 + x4 + · · ·+ x2n−2).

Further if x 6= 1 then

1− xn

1− x
≤
√
n(1− x2n−1)

1− x2
.

xxxxxxxxxxxxx

1.2 Practical 1.2: Hausdorff Property and LUB Axiom of R,
Archimedian Property

1.2.1 Prerequisite of Practical 1.2

(1) Let p, ε ∈ R and ε > 0. The ε− neighbourhood of p is the set denoted by N(p, ε) =
{x ∈ R/|x− p| < ε}.

Let p, ε ∈ R and ε > 0. A deleted ε− neighbourhood of p is a set N(p, ε) \ {p}, where
ε > 0.

N(p, ε) = (p− ε, p+ ε).

(2) Interior point: Let D ⊆ R. Let c ∈ D. Then c is called an interior point of D if there
exists a neighbourhood of c contained in D.
So, c ∈ D is called an interior point of D if there exists ε > 0 such that N(c, ε) ⊆ D.

(3) Limit point: Let D ⊆ R and let c ∈ R. Then c is said to be a limit point of D if every
neighbourhood of c contains at least one point of D other than c.
That is, c ∈ R is a limit point of D if for every ε > 0, there exist x ∈ D such that
x ∈ N(c, ε).

(4) Hausdorff Property: Any two distinct real numbers have disjoint neighbourhoods.
If p, q ∈ R are such that p 6= q then there exist disjoint neighbourhoods of p and q. That
is, there exists r > 0 such that N(p, r) ∩N(q, r) = ∅.

(5) Let S be a subset of R. We say that a real number K is an upper bound of S if for each
x ∈ S we have x ≤ K.
Hence, K is an upper bound of S if ∀ x ∈ S, x ≤ K.
S is said to be bounded above if it has an upper bound in R. That is, S is said to be
bounded above if there exists K ∈ R such that K is an upper bound of S.
Hence, S is said to be bounded above if there exists K ∈ R such that x ≤ K, for all x ∈ S.
A set S ⊂ R is not bounded above (or unbounded above) if K ∈ R then K is not
an upper bound of S. That is, for every K ∈ R, there exists x ∈ S such that x > K.

(6) Let S be a subset of R. We say that a real number k is a lower bound of S if for each
x ∈ S, we have k ≤ x.
Hence, k is a lower bound of S if k ≤ x for all x ∈ S.
S is said to be bounded below if it has a lower bound in R. That is, there exists k ∈ R
such that k is a lower bound of S.

1.2
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Hence, S is said to be bounded below if there exists k ∈ R such that k ≤ x ∈ S for all
x ∈ S.
A set S ⊂ R is not bounded below (or unbounded below) if k ∈ R implies k is not a
lower bound of S. That is, for every k ∈ R, there exists x ∈ S such that x < k.

(7) Let S be a subset of R. S is said to be bounded if it is bounded above as well as bounded
below.

(8) If S = ∅, then every real number is an upper bound as well as a lower bound of S.

(9) A nonempty set S ⊆ R is bounded if and only if there is M ∈ R+ such that, |x| ≤M ∀ x ∈
S.

(10) Let S ⊆ R. M ∈ R is called a least upper bound or supremum of S, denoted by
sup(S), if M satisfies the following two properties:
(i) M is an upper bound of S.
(ii) If K is any upper bound of S then M ≤ K.

(11) If S has a supremum, then it is unique.

(12) ∅ does not have a supremum.

(13) Let S ⊆ R. m ∈ R is called a greatest lower bound or infimum of S, denoted by inf(S),
if m satisfies the following two properties:
(i) m is a lower bound of S.
(ii) If k is any lower bound of S then k ≤ m.

(14) If S has an infimum, then it is unique.

(15) ∅ does not have an infimum.

(16) The LUB axiom or Order Completeness of R or Completeness axiom:
Every nonempty subset of R that is bounded above has a supremum in R.

(17) Every nonempty set S of real numbers that is bounded below has an infimum in R.

(18) Let S be a non-empty subset of R. Then the following statements are true.

(i) The supremum(or infimum) of S need not be an element of S. That is, sup(S) (or
inf S) may or may not belong to S.

(ii) If the supremum of a set S is an element of S, then it is called the maximum of S,
and it is denoted by maxS.

(iii) If the infimum of a set S is an element of S, then it is called the minimum of S, and
it is denoted by minS.

(iv) If K ∈ R is an upper bound of S and K ∈ S then K = supS.

(v) If k ∈ R is a lower bound of S and k ∈ S then K = inf S.

(19) Characterisation of supremum:
Let S be a nonempty subset of R that is bounded above. Let M ∈ R. Then M = supS if
and only if

(I) M is an upper bound of S.
(II) for any ε > 0, there is an element a ∈ S such that M − ε < a ≤M .



25

(20) Characterisation of infimum:
Let S be a nonempty subset of R that is bounded below. Let m ∈ R.
Then m = inf S if and only if

(I) m is a lower bound of S.
(II) for any ε > 0, there is an element a ∈ S such that m ≤ a < m+ ε.

(21) Let A,B be nonempty subsets of R.

(i) If A ⊆ B and B is bounded then A is also bounded.

(ii) If A ⊆ B, and B is bounded, then inf B ≤ inf A ≤ supA ≤ supB.

(iii) If A and B are bounded then:

(a) A ∪B and A ∩B are also bounded.

(b) inf(A ∪B) = min{inf A, inf B}.
(c) sup(A ∪B) = max{supA, supB}.

(d) inf(A ∩B) ≥ max{inf A, inf B}.
(e) sup(A ∩B) ≤ min{supA, supB}.

(22) For a ∈ R, define the set aS = {ax : x ∈ S}.
If S is bounded then aS is a bounded set and

(i) sup aS =

{
a supS, if a ≥ 0

a inf S, if a < 0
(ii) inf aS =

{
a inf S, if a ≥ 0

a supS, if a < 0

(23) For a ∈ R, define a+ S = {a+ x : x ∈ S}.
If S is bounded then the set a+ S is bounded and

(i) sup(a+ S) = a+ supS. (ii) inf(a+ S) = a+ inf S

(24) Define the set C = {a+ b : a ∈ A, b ∈ B}.
If A and B are bounded then

(i) C is a bounded set. (ii) supC = supA+ supB. (iii) inf C = inf A+ inf B.

(25) Archimedean property

Given any x ∈ R, there exists n ∈ N such that x < n.

(26) Let x, y ∈ R.

(i) If x > 0 then there exists n ∈ N such that 0 <
1

n
< x.

(ii) If x > 0 then there exists n ∈ N such that y < nx.

(iii) If x > 0 then there exists m ∈ N such that m− 1 ≤ x < m.

(27) Density of rationals: If x and y are any real numbers with x < y, then there exists a
rational number r such that x < r < y. Moreover this number r can always be selected so
that it is nonzero.

(28) If x and y are any real numbers with x < y, then there exists an irrational number s such
that x < s < y.

1.2
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1.2.2 PRACTICAL 1.2

(A) Objective Questions

Choose correct alternative in each of the following:

(1) Every non-empty subset of R which is bounded above has .......

(a) supremum in R
(b) supremum and infimum in R

(c) greatest lower bound in R
(d) neither supremum nor infimum in R

(2) If A is interval [−2, 1) then ....................

(a) inf A ∈ A and sup A ∈ A
(b) inf A ∈ A and sup A /∈ A

(c) inf A /∈ A and sup A /∈ A
(d) inf A /∈ A and sup A ∈ A

(3) A ⊆ R and M ∈ R is such that M = sup A. If B := {−5x | x ∈ A} then the infimum of
set B is ....................

(a) 5M (b) −5M (c) M
5 (d) None of these

(4) If X is a finite subset of R then ...............

(a) X is bounded above but not bounded below

(b) X is bounded below but not bounded above

(c) X is bounded

(d) None of these

(5) If ............ then intervals (1.5− ε, 1.5 + ε) and (3.4− ε, 3.4 + ε) are disjoint.

(a) 0 < ε ≤ 3.4 (b) 0 < ε ≤ 1 (c) 0 < ε ≤ 0.95 (d) 0 < ε ≤ 1.5

(6) If l1, l2 are two distinct lower bounds of set S ⊆ R and if l1 ∈ S then ....................

(a) l2 /∈ S (b) l2 ∈ S (c) l1 < l2 (d) None of these

(7) If u1, u2 are two distinct upper bounds of set S ⊆ R and if u1 ∈ S then ....................

(a) u2 /∈ S (b) u2 ∈ S (c) u2 < u1 (d) None of these

(8) If the set U of all upper bounds of set S ⊆ R is non-empty then U is ....................

(a) finite set

(b) bounded below

(c) bounded above

(d) None of these

(9) If the set L of all lower bounds of set S ⊆ R is non-empty then L is ....................
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(a) finite set

(b) bounded below

(c) bounded above

(d) None of these

(10) If A,B ⊆ R with inf A = −2 and inf B = −3 then inf (A ∪B) = ....................

(a) −3 (b) −2 (c) −5 (d) None of these

(11) If A,B ⊆ R with inf A = −2 and inf B = −3 then inf {a + b | a ∈ A and b ∈ B} =
....................

(a) −3 (b) −2 (c) −5 (d) None of these

(12) A =
{

1 + (−1)n

n : n ∈ N
}

then sup A is

(a) 1 (b) 0 (c) does not exist (d) 3
2

(13) A =
{

1 + (−1)n

n : n ∈ N
}

then inf A is

(a) 1 (b) −2 (c) does not exist (d) −3
2

(14) A =
{
−1 + 1

n : n ∈ N
}

then inf A is

(a) 1 (b) −1 (c) does not exist (d) −3
2

(15) A =
{

1 + 1
n : n ∈ N

}
then sup A is

(a) 2 (b) 0 (c) does not exist (d) 3
2

(16) A = {x ∈ R : |x− 3| < |x+ 5|} then

(a) sup A does not exist and inf A = −1

(b) sup A = 1 and inf A = 1

(c) sup A = 1 and inf A does not exist

(d) None of these

(17) A =
{
−1, −1

2 ,
−1
3 , . . .

}
then

(a) sup A does not exist and inf A = −1

(b) sup A = −1 and inf A does not exist

(c) sup A = −1 and inf A does not exist

(d) None of the above

(18) A = {3, 9, 12, 15, 18} then

(a) sup A does not exist and inf A = 3

(b) sup A = 18 and inf A = 3

(c) sup A = 0 and inf A = −1

(d) None of the above.

1.2
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(19) If S ⊆ R, M = sup S and L < M, then there exists x ∈ S such that ................

(a) L < x < M (b) L ≤ x < M (c) L < x ≤M (d) None of these

(20) If A = {1, 5, 7, 11, 14} then

(a) inf A /∈ A and sup A /∈ A
(b) inf A /∈ A and sup A ∈ A

(c) inf A ∈ A and sup A /∈ A
(d) inf A ∈ A and sup A ∈ A

(21) Between any two distinct real numbers there always exists

(a) only rational numbers

(b) only irrational numbers

(c) both rational and irrational numbers

(d) None of the above

(22) Every non-empty subset of R which is bounded below has

(a) infimum in R
(b) supremum in R

(c) infimum and supremum in R
(d) neither infimum nor supremum in R

(23) If m = inf B and m ∈ B then ....................

(1) m is the minimum of Y

(2) m is the maximum of the set of all lower
bounds of Y

(3) m is the least upper bound of Y

(4) None of these

(24) If M = sup B and M ∈ B then ....................

(1) m is the maximum of Y

(2) m is the minimum of the set of all lower
bounds of Y

(3) m is the greatest lower bound of Y

(4) None of these

(25) If inf B = sup B then ....................

(1) Y is empty set

(2) Y is singleton set

(3) Y has only two elements

(4) None of these

(26) For interval A =.......... we have inf A ∈ A and sup A /∈ A .

(1) (0, 1) (2) (0, 1] (3) [0, 1] (4) [0, 1)

(B) Descriptive Questions

(1) Find disjoint neighbourhoods of x and y.
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(i) x = 7, y = 8

(ii) x = e, y = π

(iii) x =
√

2, y =
√

3

(iv) x = 2
3 , y = 3

2 .

(v) x = 9, y = 9.5

(2) Decide whether the following sets are bounded above/below (hence bounded). Find the
infimum, supremum, maximum and minimum of the given sets if they exists.

(i)
{
x ∈ R | x2 − 3x + 2 = 0

}
(ii)

{
x ∈ R | x2 > 2

}
(iii)

{
3 + 2

n | n ∈ N
}

(iv)
{
x ∈ R | x2 − x − 12 < 0

}
(v)

{
n+ 1

n | n ∈ N
}

(vi)
{

x∈R | x2−5x + 4 < 0
}

(vii)
{

x
x+1 | x > 0

}
(viii)

{
(−1)n

(
1 + 1

n

) ∣∣ n ∈ N
}

(ix)
{

21|n ∣∣ n∈N
}

(x)
{

1
x

∣∣ 1 = x < 2
}

(xi)
{

1+(−1)n

n

∣∣∣ n ∈ N
}

(xii)
{

sinnπ
2

∣∣ n∈N
}

(3) Find the maximum, minimum, infimum and supremum of the following sets (whenever
exist). Also state whether the given sets contain their infimum and supremum.

(i) A =
{
x ∈ R : x2 − 2x− 15 < 0

}
(ii) C = {1 + (−1)n : n ∈ N}

(iii) B =
{
x ∈ R : x2 − 7x+ 12 > 0

}
(iv) D = {cosx : 0 < x < π }

(4) If x, y ∈ R are such that |x− y| < 1
n ∀ n ∈ N, then show that x = y.

(5) If a and b are two real number such that a < b+ ε, ∀ ε > 0, then prove that a ≤ b.

(6) Show that, if a ∈ R such that |a| < 1
n , ∀ n ∈ N, prove that a = 0.

(7) Show that if S =
{

1
n | n ∈ N

}
then inf (S) = 0

(8) Show that for a ∈ R, if S =
{
a+ 1

n | n ∈ N
}
, then inf (S) = a.

(9) If m is a lower bound of S ⊆ R such that m ∈S then prove that m = inf S. If M is an
upper bound of S ⊆ R such that M ∈S then prove that M = sup S.

(10) Prove that if the set of upper bounds of S ⊆ R is non-empty, then it is bounded below.
Prove that if the set of lower bounds of S ⊆ R is non-empty, then it is bounded above.

(11) Give an example of set A ⊆ R such that:

(i) A is bounded above but not below.

(ii) A contains its lub but not its glb.

(iii) A does not contain its lub as well as its glb.

(iv) lub A = glb A.

(v) each element of A is rational but its lub is irrational.

(vi) each element of A is irrational but its lub is rational.

1.2
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(12) Exhibit three upper bounds for {x∈R : x ≤ 0} and three lower bounds for {x∈R : x ≥ 0}.

(C) Some More Descriptive Questions

(1) Show that no upper bound or lower bound of the set {x∈R : 0 < x < 1} that belongs to
the set.

(2) Let a ∈ R be positive and S := {t ∈ R | t > 0 and t2 < a}.
Then prove that:

(i) a
1+a is an element of S.

(ii) 1 + a is an upper bound for S.

(iii) sup S exists in R.
(iv) Put u := sup S. Suppose that u2 < a then there exists h > 0 such that (u+h)2−u2 <

a− u2. Which is a contradiction to u is an upper bound of S.

(v) Suppose that u2 > a then there exists h > 0 such that u2− (u− h)2 < u2− a. Which
is a contradiction to u is an least upper bound of S.

(vi) u2 = a.

(3) Let a ∈ R be positive and S := {t ∈ R | tn < a}. Then prove that:

(i) ca1 + a is an element of S and sup S ∈ R and

(ii) ( sup S)n = a.

(iii) If S = {an ∈ R | n ∈ N} is bounded and An := {ak ∈ S | k ≥ n} ∀ n ∈ N. Then for
each n ∈ N, prove that inf An ≤ inf An+1 ≤ sup An+1 ≤ sup An.

xxxxxxxxxxxxxxx

1.3 Practical 1.3: Convergence and divergence of sequences,
bounded sequences, Sandwich Theorem.

1.3.1 Prerequisite of Practical 1.3

(1) A sequence of real numbers is a function whose domain is the set N and codomain is the
set R.
A sequence is denoted by (xn), (yn), (an), (bn), and so on.
The value of a sequence (xn) at n ∈ N is given by xn, and it is called the nth term of that
sequence.
The set {xn : n ∈ N} is called the set of terms of the sequence (xn).
Note: Although a sequence has infinitely many terms, the set of its terms need not be
infinite. Consider the following sequences (xn) whose nth term is defined by

(i) xn = 1. So, {an : n ∈ N} = {1}. The set of the terms of the sequence is finite.

(ii) xn = (−1)n. So, {an : n ∈ N} = {−1, 1}. The set of the terms of the sequence is
finite.
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(iii) xn = n2. So, {an : n ∈ N} = {1, 4, 9, · · · }. The set of the terms of the sequence is
infinite.

(2) A sequence (xn) is said to be a convergent sequence if there is p ∈ R such that for every
ε > 0, there exists n0 ∈ N such that |xn − p| < ε for all n ≥ n0.

In this case, we say that (xn) converges to p or that p is a limit of (xn), and write as
xn −→ p (as n −→∞) or lim

n−→∞
xn = p.

(3) We write xn 6−→ p if the sequence (xn) does not converge to p.

(4) A sequence that is not convergent is said to be divergent.

(5) Some of the convergent sequences are

(i) xn =
1

n
(ii) xn =

(−1)n

n
(iii) xn =

√
n+ 3−

√
n

We show that (ii) is a convergent sequence. We can observe that
(−1)n

n
→ 0. We need to

prove the following: ∀ ε > 0, ∃ n0 ∈ N such that ∀ n ≥ n0,

∣∣∣∣(−1)n

n
− 0

∣∣∣∣ < ε.

Let ε > 0 be given.
For all n ∈ N, we have,

|xn − p| =
∣∣∣∣(−1)n

n
− 0

∣∣∣∣ =
1

n
.

Since ε > 0, by Archimedean Property, we get, n0 ∈ N such that
1

ε
< n0.

1

ε
< n0 =⇒ 1

n0
< ε · · · · · · (I)

Hence, for all n ≥ n0, we have,
1

n
≤ 1

n0
.

=⇒ |xn − p| =
∣∣∣∣(−1)n

n
− 0

∣∣∣∣ =
1

n
≤ 1

n0
< ε. · · · (from (I) )

So,
(−1)n

n
−→ 0.

(6) Some of the divergent sequences are as follows.

(i) xn = n (ii) xn = (−1)n (iii) xn = (−1)nn

(7) A convergent sequence converges to a unique limit.

(8) We say that (xn) tends to ∞ or diverges to ∞ and write as lim
n−→∞

xn = ∞ if for every

M ∈ R, there exists n0 ∈ N such that xn > M for all n ≥ n0.

1.3
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(9) We say that (xn) tends to −∞ or diverges to −∞ and write as lim
n−→∞

xn = −∞ if for

every M ∈ R, there exists n0 ∈ N such that xn < M for all n ≥ n0.

(10) If the sequence (xn) diverges but does not diverge to infinity and does not diverge to minus
infinity, then (xn) is said to oscillate.
Some of the oscillating sequences are as follows.

(i) (−1)n (ii) sin
(nπ

2

)
(iii) (−1)n

(
1 +

1

n

)n
(iv) 1, 2, 1, 3, 1, 4, . . .

(11) A sequence (xn) is said to be bounded above if ∃ K ∈ R such that xn ≤ K, ∀ n ∈ N.
A sequence (xn) is said to be bounded below if ∃ k ∈ R such that k ≤ xn, ∀ n ∈ N.
A sequence (xn) is said to be bounded if (xn) is bounded above and bounded below.
A sequence is said to be unbounded if it is not bounded. That is, it is not bounded above
or not bounded below or not bounded above as well as not bounded below.
Some examples of bounded and unbounded sequences:

(i) xn = c, ∀ n ∈ N where c ∈ R. (bounded sequence)

(ii) xn = 1
n , ∀ n ∈ N (bounded sequence)

(iii) yn = n, ∀ n ∈ N( bounded below but not bounded above, so unbounded sequence)

(iv) zn = (−1)n, ∀ n ∈ N ( bounded sequence)

(12) Every convergent sequence is bounded. (Converse not true as xn = (−1)n is bounded but
not congergent)

(13) Algebra of Convergent Sequences: Let xn −→ p and yn −→ q. Then

(i) xn + yn −→ p+ q,

(ii) xn − yn −→ p− q,
(iii) rxn −→ rp for any r ∈ R,
(iv) xnyn −→ pq,

(v) If xn 6= 0 ∀ n ∈ N and p 6= 0 then
1

xn
−→ 1

p
.

(vi) If xn −→ p and yn −→ q, yn 6= 0 ∀ n ∈ N and q 6= 0 then
xn
yn
−→ p

q
.

(14) Properties of Convergent Sequences:

(i) If xn −→ p then |xn| −→ |p|. (Converse not true.)

(ii) xn −→ 0 if and only if |xn| −→ 0.

(iii) (xn) is bounded and yn −→ 0 then xn yn −→ 0.

(iv) If xn ≥ 0 ∀ n ∈ N and xn −→ p then p ≥ 0 and x
1
k
n −→ p

1
k for any k ∈ N.

(v) If xn −→ p where p > 0 then ∃ n0 ∈ N such that xn > 0, ∀ n ≥ n0.

(vi) If xn −→ p and p 6= 0 then ∃ m ∈ N such that xn 6= 0, ∀ n ≥ m.
(vii) Suppose xn −→ p and yn −→ q. If there is n0 ∈ N such that xn ≤ yn for all n ≥ n0,

then p ≤ q.
(8) Suppose xn −→ p and yn −→ q. If p < q, then there is m0 ∈ N such that xn < yn for

all n ≥ m0.
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(15) Sandwich Theorem for sequences: Let (xn), (yn) and (zn) be sequences and p ∈ R be
such that xn ≤ zn ≤ yn ∀ n ∈ N and xn −→ p as well as yn −→ p. Then zn −→ p.

(16) Convergence of standard sequences:

(1) lim
n−→∞

1

1 + na
= 0 ∀ a > 0.

(2) lim
n−→∞

bn = 0 ∀ b, |b| < 1.

(3) lim
n−→∞

c
1
n = 1, ∀ c > 0.

(4) lim
n−→∞

n
1
n = 1.

(17) Let a ∈ R. We will show that there exists a sequence of rationals converging to a.
For n = 1, a < a + 1. By Density theorem, there exists a rational say x1 between a and
a+ 1.

For n = 2, a < a +
1

2
. By Density theorem, there exists a rational say x2 between a and

a+
1

2
.

We continue this way, and for n = k, by Density theorem, there exists a rational say xk

between a and a+
1

k
.

For n = k+1, by Density theorem, there exists a rational say xk+1 between a and a+
1

k + 1
.

Hence, there exists a rational xn between a and a+
1

n
for all n ∈ N.

Thus, a < xn < a+
1

n
for all n ∈ N. This implies 0 < xn − a <

1

n
for all n ∈ N.

By Sandwich theorem, xn − a −→ 0 and hence xn −→ a.
Thus, we know that there exists a sequence of rationals converging to a where a is any
real number.
We may want to find one such actual sequence.
Let a ∈ R.

Case 1 a > 0. Let n ∈ N. Consider na. Clearly na > 0.
By prerequisite of practical 1.1, no. (26), there exists m ∈ N such that m− 1 ≤ na <
m.
So, m− 1 ≤ na < m < m+ 1. This implies −1 ≤ na−m < 1. (m = [na] integral part
of na)

That is, − 1

n
≤ a− m

n
<

1

n
for all n ∈ N.

Hence
∣∣∣m
n
− a
∣∣∣ < 1

n
.

As,
1

n
−→ 0 and 0 ≤

∣∣∣m
n
− a
∣∣∣ , we have,

∣∣∣m
n
− a
∣∣∣ −→ 0 and hence

m

n
−→ a.

Since
m

n
where m = [na] is a rational for every n ∈ N, we have found a sequence of

rationals converging to a when a > 0.

Case 2 a < 0. Then −a > 0. By above case, we have a sequence say (xn) of rationals
converging to −a. Hence (−xn) is a sequence of rationals converging to a.

Case 3 a = 0. Then consider the sequence xn =
1

n
for all n ∈ N. This is a sequence of

rationals converging to 0. Even the constant sequence xn = 0 for all n ∈ N is also
another example of a sequence of rationals converging to a.

1.3
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(18) Let a ∈ R. We will show that there exists a sequence of irrrationals converging to a.
For n = 1, a < a + 1. From Density theorem, there exists an irrational say y1 between a
and a+ 1.

For n = 2, a < a +
1

2
. From Density theorem, there exists an irrational say y2 between a

and a+
1

2
.

We continue this way, and for n = k, from Density theorem, there exists an irrational say

yk between a and a+
1

k
.

For n = k + 1, from Density theorem, there exists an irrational say yk+1 between a and

a+
1

k + 1
.

Hence, there exists an irrational xn between a and a+
1

n
for all n ∈ N.

Thus, a < xn < a+
1

n
for all n ∈ N. This implies 0 < xn − a <

1

n
for all n ∈ N.

By Sandwich theorem, xn − a −→ 0 and hence xn −→ a.
Thus, we know that there exists a sequence of irrationals converging to a where a is any
real number.
We may want to find one such actual sequence.
Let a ∈ R. We have seen that we can find a sequence of rationals say (xn) converging to a.

Now,

(√
2

n

)
is a sequence of irrationals converging to 0.

So,

(
xn +

√
2

n

)
is a sequence of irrationals converging to a.

1.3.2 PRACTICAL 1.3

(A) Objective Questions

Choose correct alternative in each of the following:

(1) Given lim
n−→∞

xn = 5, lim
n−→∞

yn = −3, then lim
n−→∞

1 +
√
xn

1 + y2
n

is

(a)
1 +
√

5

7
(b)

6

7 (c)
1 +
√

5

10

(d) does not exist.

(2) If xn =
4n2 − 3n+ 2

n2 + 5n
for all n ∈ N, then

(a) (xn) is not bounded below.

(b) (xn) is not bounded above.

(c) (xn) is not convergent.

(d) none of these.

(3) Which of the following sequence is divergent?

(a) (n
1
n ) (b) (2

1
n ) (c) ( n

√
n!) (d) none of these

(4) If (xn + yn) and (yn) are convergent sequences of real numbers then (xn)
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(a) is divergent.

(b) may or may not be convergent.

(c) is convergent.

(d) none of the above.

(5) (xn) and (yn) are sequences of real numbers and an = |xn − yn| for all n ∈ N. If (xn)
converges to p and (an) converges to 0 then

(a) (yn) is convergent but lim
n−→∞

yn 6= p.

(b) (yn) may not be convergent.

(c) (yn) is convergent and lim
n−→∞

yn = p.

(d) none of the above.

(6) (xn) and (yn) are sequences of real numbers such that xn < yn for all n ∈ N.

(a) lim
n−→∞

xn < lim
n−→∞

yn.

(b) lim
n−→∞

xn ≥ lim
n−→∞

yn.

(c) lim
n−→∞

xn = lim
n−→∞

yn.

(d) lim
n−→∞

xn ≤ lim
n−→∞

yn.

(7) (xn) and (yn) are sequences such that (xn + yn) is convergent. Then

(a) at least one of (xn) and (yn) is convergent.

(b) both (xn) and (yn) are convergent.

(c) both (xn) and (yn) may be divergent.

(d) none of these.

(8) Which one of the following statement is not true?

(a) A convergent sequence converges to a unique limit.

(b) Every convergent sequence is bounded.

(c) A bounded sequence is convergent.

(d) none of these.

(9) (xn) and (yn) are sequences. Under which of the following condition is the sequence
(xn ∗ yn) convergent?

(a) (xn) is convergent.

(b) (xn) is convergent and (yn) is bounded.

(c) (xn) converges to 0 and (yn) bounded.

(d) none of these.

(10) x1 = 1 and xn+1 =
√

14 + 5xn. Assume that the sequence (xn)

(a)
√

19 (b) −2 (c) 7 (d) 0

(B) Descriptive Questions

(1) The sequence (xn) is defined by the following formula for the nth term. Write first five
terms in each case.

1.3
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(i) xn =
1

nn
(ii)

(−1)n

n
(iii) xn = cos

(
nπ
2

) (iv) xn =
n+ 1

n
√
n

(v) xn =
(
1 + 1

n

)n
.

(2) List the first four terms of the following inductively defined sequences.

(i) x1 = 2, xn+1 = 5xn − 3.

(ii) x1 = 1, xn+1 = xn +
1

xn
.

(iii) x1 = 7, x2 = 5, xn+2 = xn+1 + xn.

(3) Find a value of n0 for the following convergent sequences (xn) and for the given ε so that
|xn − p| < ε for every n ≥ n0 where p is the limit of the sequence (xn).

(i) xn =
1

n
for all n ∈ N and ε = 0.004.

(ii) xn =
1

n
for all n ∈ N and ε = 0.05.

(iii) Compare the values of n0 that you have found in the above two examples. Write your
conclusion that will give the relation between the value of ε and corresponding value
of n0 for the given convergent sequence.

(iv) xn =
1

n2
for all n ∈ N and ε = 0.0132.

(v) xn =
1

n2
for all n ∈ N and ε = 0.05.

(vi) xn =
2n+ 1

3n+ 2
for all n ∈ N and ε = 0.0132.

(vii) xn =
2n+ 1

3n+ 2
for all n ∈ N and ε = 0.05.

(4) Use the ε− n0 definition of the limit of a sequence to establish the following limits.

(i) lim
n−→∞

3n

n+ 2
= 3.

(ii) lim
n−→∞

n2 − 2

2n2 + 3
=

1

2
.

(iii) lim
n−→∞

1 +
(−1)n

n
= 1.

(iv) lim
n−→∞

1 + 2
√
n

1 +
√
n

= 2.

(v) lim
n−→∞

3n2 − 4n+ 2

4n2 + 2n− 1
=

3

4
.

(vi) lim
n−→∞

√
n+ 2−

√
n = 0.

(vii) lim
n−→∞

(0.5)n

n!
= 0

(5) Use Sandwich Theorem (Squeeze theorem) to show that each of the following sequence is
convergent and also find its limit using the Sandwich Theorem.

(i) xn =
(−1)n sinn

2n

(ii) xn =
7n

n!
.

(iii) xn =
n2 + n sinn

n2 + cosn
.

(iv) xn =

(
1 +

n

n+ 1

) 1
n

.

(v) xn =
1

(n+ 1)2
+

1

(n+ 2)2
+ · · · . +

1

(n+ n)2
.
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(vi) xn =
1√

n2 + 1
+

1√
n2 + 2

+ · · · +

1√
n2 + n

(vii) xn =

(
1 +

1

n2

)n

(6) If lim
n−→∞

xn = 3 and lim
n−→∞

yn = 4 then prove that there exists n0 ∈ N such that xn+yn < 8,

for all n ≥ n0.

(7) Give an example of each of the following.

(i) A bounded sequence which is not convergent.

(ii) A sequence (xn) converges to 0 but (xnyn) does not converge to 0.

(8) xn =


3− 1

n
if n is odd,

4 +
1

n2
if n is even.

Is (xn) convergent? Justify your answer.

(9) Give an example of a divergent sequence (xn) for which xn 9∞ and xn 9 −∞ and which
is

(i) bounded (ii) unbounded

1.4 Practical 1.4: Monotonic sequences, Cauchy sequences, Subse-
quences.

1.4.1 Prerequisite of Practical 1.4

(1) A sequence (xn) is said to be monotonically increasing if xn ≤ xn+1 for all n ∈ N.
A sequence (xn) is said to be monotonically decreasing if xn+1 ≤ xn for all n ∈ N.
A sequence is said to be monotonic if it is either monotonically increasing or monotoni-
cally decreasing.
Note:

(i) If a sequence (xn) is monotonically increasing then it is bounded below by x1.

(ii) If a sequence (xn) is monotonically decreasing then it is bounded above by x1.

(iii) A constant sequence is both, monotonically increasing as well as monotonically de-
creasing.

(iv) To check whether the sequence (xn) is monotonically increasing or decreasing, we need
to consider the difference xn+1 − xn. If xn+1 − xn ≥ 0 then (xn) is monotonically
increasing and if xn+1 − xn ≤ 0 then (xn) is monotonically decreasing.

(2) If a monotonically increasing sequence (xn) is bounded above then it is convergent and it
converges to the supremum of {xn : n ∈ N}.

(3) If a monotonically decreasing sequence (xn) is bounded below then it is convergent and it
converges to the infimum of {xn : n ∈ N}.

1.4
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(4) A monotonic sequence is convergent if and only if it is bounded.

(5) lim
n−→∞

(
1 +

1

n

)n
= e

(6) Let (xn) be a sequence. If n1, n2, · · · are positive integers such that nk < nk+1 for each
k ∈ N, then the sequence (xnk) whose terms are xn1 , xn2 , · · · is called a subsequence of
(xn).
Note:

(i) Every sequence is it’s own subsequence.

(ii) Since nk+1 > nk for all k ∈ N, we have nk ≥ k for all k ∈ N.
(iii) nk −→∞ as k −→∞.

(7) Let (xn) be a sequence and (xnk) be a subsequence of (xn). Let p ∈ R. We say that the
subsequence (xnk) converges to p and write as xnk −→ p, if for every ε > 0 there
exists k0 ∈ N such that |xnk − p| < ε , for all k ≥ k0.

(8) A subsequence of a convergent sequence is convergent and it converges to the same limit
as that of the sequence.
Note:

(i) A sequence (xn) converges to p if and only if every subsequence of (xn) converges to
p.

(ii) If a sequence has two subsequences converging to two distinct limits then the given
sequence is not convergent.

(iii) A sequence (xn) tends to ∞ if and only if every subsequence of (xn) tends to ∞.
(iv) A sequence (xn) tends to −∞ if and only if every subsequence of (xn) tends to −∞.

(9) A sequence (xn) is called a Cauchy sequence if for every ε > 0, there exists n0 ∈ N such
that |xn − xm| < ε for all n,m ≥ n0.

(10) Every Cauchy sequence is bounded.(converse not true)

(11) Every convergent sequence is Cauchy.

(12) Every sequence in R has a monotonic subsequence. (only statement)

(13) Every bounded sequence in R has a convergent subsequence. (only statement)

(14) every Cauchy sequence in R is convergent.

1.4.2 PRACTICAL 1.4

(A) Objective Questions

Choose correct alternative in each of the following:

(1) lim
n−→∞

(
1− 7

n

)n
is
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(a) e7
(b)

7

e
(c)

7

e7
(d) does not exist.

(2) x1 = 2 and x2 = 4 and xn =
xn−1

2n
+ (2n − 1)

xn−2

n
for all n ≥ 3. If lim

n−→∞
xn exists then

lim
n−→∞

xn is

(a) 1 (b) 0 (c)
1

2
(d) does not exist.

(3) If x1 and x2 are positive and xn+2 =
√
xn +

√
xn+1 for all n ∈ N then assuming exisence

of limit, lim
n−→∞

xn is

(a) 1 (b) 4 (c)
1√
2

(d) does not exist.

(4) Let (xn) be a monotonic increasing sequence which is not bounded above then (xn)

(a) is divergent. (b) is convergent. (c) does not exist. (d) none of the
above.

(5) (an), (bn) and (cn) are sequences of real numbers such that bn = a2n and cn = a2n+1. If
(an) is convergent then

(a) (bn) is convergent but (cn) need not be convergent.

(b) (cn) is convergent but (bn) need not be convergent.

(c) both (bn) and (cn) are convergent.

(d) none of these.

(6) (an) and (bn) are sequences of real numbers defined as a1 = 1 and an+1 = an + (−1)n2−n

for all n ≥ 1 and bn =
2an+1 − an

an
. Then

(a) (an) converges to 0 and (bn) is Cauchy.

(b) (an) converges to a non-zero real number and (bn) is Cauchy.

(c) (an) converges to 0 and (bn) is not convergent.

(d) (an) converges to a non-zero real number and (bn) is not convergent.

(7) Which of the following is true?

(a) If (xn) has a convergent subsequence then (xn) must be a Cauchy sequence.

(b) If (xn) has a convergent subsequence then (xn) must be a bounded sequence.

(c) The sequence
(

sin
nπ

2

)
does not have a convergent subsequence.

(d) The sequence

(
n cos

1

n

)
has a convergent subsequence.

(8) If all subsequences of (xn) are convergent then (xn) is

1.4
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(a) convergent.

(b) divergent.

(c) not bounded.

(d) none of the above.

(9) If (xn), (yn) are Cauchy sequences of real numbers then which of the following statement
is not true?

(a) (xn + yn) is a Cauchy sequence.

(b) (xn ∗ yn) is a Cauchy sequence.

(c) (c ∗ xn) is a Cauchy sequence.

(d) All the above statements are not true.

(10) Let (xnk) and (xnr) be two convergent subsequences of (xn) converging to same limit then
(xn) is

(a) convergent. (b) monotone. (c) divergent. (d) none of the
above.

(11) Which of the following is TRUE?

(a) Every sequence that has a convergent subsequence is a Cauchy sequence.

(b) Every sequence that has a convergent subsequence is a bounded sequence.

(c) The sequence (sinn) has a convergent subsequence.

(d) The sequence
(
n cos( 1

n)
)

has a convergent subsequence.

(12) The sequence (an) is defined as follows: a1 = 1, an+1 =
7an + 11

21
for all n ∈ N. Then (an)

is

(a) an increasing, divergent sequence.

(b) an increasing sequence with lim
n−→∞

an =
11

14
.

(c) a decreasing sequence which is divergent.

(d) a decreasing sequence with lim
n−→∞

an =
11

14
.

(13) (an) and (bn) are sequences of real numbers such that (an) is increasing and (bn) is decreas-
ing. Under which of the following conditions the sequence (an + bn) is always convergent?

(a) (an) and (bn) are bounded sequences.

(b) (an) is bounded above.

(c) (an) is bounded above and and (bn) is bounded below.

(d) an −→∞ and bn −→ −∞.

(B) Descriptive

(1) Using ε− n0 definition, show that the following sequences are Cauchy.
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(a) xn =
2

n2
for n ∈ N.

(b) xn =
(−1)n

n2
for n ∈ N.

(c) xn =
n+ 2

n+ 1
for n ∈ N.

(d) xn =
n+ 3

2n+ 1
for n ∈ N.

(e) xn =
1

3n
for n ∈ N.

(2) State whether the following statements are true pr false with justification.

(a) If (xn + yn) is a Cauchy sequence of real numbers then either (xn) or (yn) is Cauchy.

(b) If (xn ∗ yn) is a Cauchy sequence of real numbers then either (xn) or (yn) is Cauchy.

(c) If (x2
n) is a Cauchy sequence of real numbers then (xn) is Cauchy.

(3) Prove the following.

(a) (xn) and (yn) are Cauchy sequences of real numbers. If an = |xn − yn| for all n ∈ N
then (an) is also Cauchy.

(b) If (xn) is a Cauchy sequence of integers then there exists N ∈ N such that xn = c for
all n ≥ N where c is an integer constant.

(4) Check whether the following sequences are monotonic and bounded.

(i) xn =
5

n+ 1
for n ∈ N.

(ii) xn =
n

n+ 2
for n ∈ N.

(iii) xn =
n2

n+ 2
for n ∈ N.

(iv) xn =
n

n2 + 1
for n ∈ N.

(v) xn =
2n3n

5n+1
for n ∈ N.

(vi) xn = n3 − n for n ∈ N.

(vii) xn =
n+ 1

n− 1
for n ∈ N.

(viii) xn =
1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(2n− 1)2
for all n ∈ N.

(ix) xn =
1

1 ∗ 3
+

1

2 ∗ 32
+ · · ·+ 1

n ∗ 3n
for all n ∈ N.

(x) xn =
1

n
+

1

n+ 1
+ · · ·+ 1

2n− 1
for all n ∈ N.

(5) x1 = 1 and xn+1 =
3xn + 2

6
, for all n ∈ N. Prove that (xn) is monotonically decreasing

and bounded below.

(6) Show that (xn) is monotonic in the following examples. Also find an upper bound if it is
monotonically increasing and a lower bound if it is monotonically decreasing.

(i) xn = 1 +
1

2
+

1

22
+ · · ·+ 1

2n
for all n ∈ N.

(ii) xn =
1

12 + 1
+

1

22 + 1
+ · · ·+ 1

n2 + 1
for all n ∈ N.

(iii) xn =
1

1 ∗ 2
+

1

2 ∗ 3
+ · · ·+ 1

n ∗ (n+ 1)
for all n ∈ N.

(iv) xn =
1

2n+ 1
+

1

2n+ 3
+ · · ·+ 1

4n− 1
for all n ∈ N.

(v) xn =
n+ 1

n− 1
, for all n ∈ N.

1.4



42 CHAPTER 1. (USMT 101) CALCULUS I

(vi) xn =

n∑
k=0

1

k!
(Hint: 2k−1 ≤ k! for all k ∈ N).

(7) Prove that (xn) is not convergent in the following examples by showing that it has two
convergent subsequences converging to different limits.

(i) xn = (−1)n +
1

n
for n ∈ N.

(ii) xn = sin
(nπ

2

)
for n ∈ N.

(iii) xn = cos
(nπ

3

)
for n ∈ N.

(8) Give an example of each of the following.

(i) a sequence of real numbers such that no subsequence is convergent.

(ii) an unbounded sequence that has a convergent subsequence.

1.5 Practical 1.5: Differential Equations

1.5.1 Prerequisite of Practical 1.5

(1) Differential Equation: An equation involving one dependent variable and its derivatives
with respect to one or more independent variables is called a differential equation. For

example m
d2y

dx2
= −ky. Here y is the dependent variable and x is an independent variable.

(2) Ordinary differential equation: An ordinary differential equation is one in which there
is only one independent variable, so that all the derivatives occurring in it are ordinary
derivatives.

(3) Order: The order of a differential equation is the order of the highest derivative present
in the equation.

(4) degree: The degree of a differential equation is the power of the highest-order derivative.

(5) General Ordinary differential equation of the nth order is F

(
x, y,

dy

dx
,
d2y

dx2
, · · · , d

ny

dxn

)
=

0, or using the notation for derivatives, F (x, y, y′, y′′, · · · y(n)) = 0.

(6) Linear ordinary differential equation: The linear ordinary differential equation is the
ordinary differential equation in which the dependent variable and its derivatives occur in
the first degree and the equation does not contain their product.

The general first order linear equation is
dy

dx
+ p(x)y = q(x).

(7) Partial differential equation: A partial differential equation is the one involving more
than one independent variable, so that the derivatives occurring in it are partial derivatives.
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(8) A function f(x, y) is called homogeneous of degree n if f(tx, ty) = tn f(x, y) for all suitably
restricted x, y and t.

e.g. x2 + xy,
√
x2 + y2, sin

(
x
y

)
are homogeneous of degrees 2, 1 and 0.

The differential equation M(x, y)dx + N(x, y)dy = 0 is said to be homogeneous if the
functions M and N are homogeneous functions of the same degree.

(9) Exact differential equation:
Consider the differential equation M(x, y)dx+N(x, y)dy = 0.

If there exists a function f(x, y) having continuous partial derivatives such that
∂f

∂x
= M

and
∂f

∂y
= N then the given differential equation is said to be an exact differential equation

of first order and first degree.

(10) The necessary and sufficient condition for M(x, y)dx + N(x, y)dy = 0 to be an exact

differential equation is
∂M

∂y
=
∂N

∂x
.

(11) If the differential equation M(x, y)dx + N(x, y)dy = 0 is non-exact but there exists a
function µ(x, y) such that the equation µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0. is exact
then the function µ(x, y) is called an integrating factor of M(x, y)dx+N(x, y)dy = 0.

(12) Rules for finding integrating factors.
RULES I and II
RULE I.Suppose the differential equation M(x, y)dx + N(x, y)dy = 0 is non-exact and

homogeneous. If M x + N y 6= 0, then
1

M x+N y
is an integrating factor of

Mdx+Ndy = 0
RULE II. Suppose the differential equation M(x, y)dx + N(x, y)dy = 0 is non-exact. If
M x−N y 6= 0 and the equation has the form f1(xy) y dx+ f2(xy) x dy = 0, then

1

M x−N y
is an integrating factor.

Note:

(1) M x+N y = 0 =⇒ M

N
=
−y
x

∴ the differential equation becomes,
dy

dx
=
−M
N

=
y

x

∴
dy

dx
=
y

x

∴
dy

y
=
dx

x
Integrating both sides we get,
log y = log x+ log c

∴
y

x
= c is a solution.

(2) When M x−N y = 0 =⇒ M

N
=
y

x

∴ the differential equation becomes,
dy

dx
=
−M
N

=
−y
x

∴
dy

dx
=
−y
x

1.5
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∴
dy

y
= −dx

x
Integrating both sides we get,
log y = − log x+ log c
∴ xy = c is a solution.

RULE III. Suppose the differential equation M(x, y)dx+N(x, y)dy = 0 is non-exact. If
∂M

∂y
− ∂N

∂x

N
is a function of x alone, say f(x) then e

∫
f(x) dx is an integrating

factor.
RULE IV Suppose the differential equation M(x, y)dx + N(x, y)dy = 0 is non-exact. If
∂N

∂x
− ∂M

∂y

M
is a function of y alone, say F (y) then e

∫
F (y) dy is an integrating

factor.

(13) The general first order linear equation is
dy

dx
+ p(x)y = q(x).

The integrating factor of the first order linear equation
dy

dx
+ p(x)y = q(x) is e

∫
p(x) dx

and its solution is y e
∫
p(x)dx =

∫
e
∫
p(x)dxq(x) dx+ c.

(14) Equations reducible to the linear form : Bernoulli’s Differential Equations
Sometimes the equations that are not linear can be reduced to the linear form. In partic-

ular, this is the case with equations of the form
dy

dx
+ P (x) y = Q(x) yn.

Dividing by yn and multiplying by (−n+ 1), this equation becomes

(−n+ 1)y−n
dy

dx
+ (−n+ 1) P (x) y−n+1 = (−n+ 1) Q(x)yn

put v = y−n+1 ∴ dv = (−n+ 1)y−ndy and the equation (1) becomes,
dv

dx
+ (−n+ 1)P (x) v = (−n+ 1)Q(x)

i.e.
dv

dx
+ (1− n)P (x) v = (1− n) Q(x)

which is linear in v.

Hence the equation of the form
dy

dx
+ P (x) y = Q(x) yn can be reduced to the first

order linear ordinary differential equation.

1.5.2 PRACTICAL 1.5

(A) Objective Questions

Choose correct alternative in each of the following:

(1) The degree of the O.D.E. y′ + x = (y − xy′)−2 is

(a) 3 (b) 1
2 (c) 2. (d) 1.

(2) y2 = cx is the general solution of which of the following first order O.D.E.?
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(a)
dy

dx
=

x

2y
. (b)

dy

dx
=

y

2x
. (c)

dy

dx
=

2y

x
. (d)

dy

dx
=

2x

y
.

(3) The following is an I.F. of the Linear first order O.D.E.
dy

dx
+ Py = Q, where P,Q are

functions of x only

(a) e−Pdx (b) eQdx (c) ePdx (d) e−Qdx

(4) A necessary and sufficient condition for a first order O.D.E. M(x, y)dx+N(x, y)dy = 0 to
be exact is

(a)
∂M

∂y
6= ∂N

∂x
(b)

∂M

∂y
=
∂N

∂x
(c)

∂M

∂x
=
∂N

∂y
(d)

∂M

∂x
6= ∂N

∂y

(5) A differential equation is considered to be ordinary if it has

a) more than one dependent variable.

b) one independent variable.

c) more than one independent variable.

d) None of these.

(6) Integrating factor of the first order differential equation (x2 + y2 + x)dx+ xydy = 0 is

(a) y. (b) x. (c) x−1. (d) y−1.

(7) Which of the following is not an exact first order differential equation?

(a) (2x+ y − 4)dx+ (x− 2y + 7)dy = 0

(b) 2xdy + 2y2dx = 0

(c) (x3 − 6xy − 4y2)dx+ (2y2 − 6xy − 4x2)dy = 0

(d) None of the above.

(8) If the general solution of a differential equation is (y+a)2 = bx where a and b are arbitrary
constants then the order of the differential equation is

(a) 1 (b) 2 (c) 3 (d) None of these.

(9) The following is an I.F. of the first order O.D.E. (x+ y3)dx+ 6xy2dy = 0

(a) x−
1
2 (b) y−3 (c) y−

1
2 . (d) None of these.

(10) The equation of the orthogonal trajectories to the family of parabolas y2 = 2x+ c is (Here
c and k are arbitrary constants).

1.5
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(a) y = ke−2x. (b) y = ke−x. (c) y = kex. (d) None of these.

(11) The degree of the O.D.E.
dy

dx
=

√
y3 − 2x

dy

dx
+ 4 is

(a)
1

2
(b) 1 (c) 2 (d) 3.

(12) Which of the following is an exact first order O.D.E.

(a) (x2 − 2x+ 2y2)dx+ 2xydy = 0

(b) 2xydx+ (x2 + 2)dy = 0

(c) x2ydy − ydx = 0

(d) None of these.

(B) Descriptive Questions

(1) Test each of the following equations for exactness, and solve it if it is exact:

(i) eydx+ (xey + 2y)dy = 0

(ii) (2xy3+y cosx) dx+(3x2y2+sinx) dy =

0.

(iii)

(
x+

2

y

)
dy + ydx = 0

(2) Determine which of the following equations are exact, and solve the ones that are exact.

(i)

(
x+

2

y

)
dy + y dx = 0

(ii) (sinx tan y + 1) dx+ cosx sec2 y dy = 0

(iii) (y − x3) dx+ (x+ y3) dy = 0

(iv) (2y2 − 4x+ 5) dx = (4− 2y + 4xy) dy

(v) (y + y cosxy) dx+ (x+ x cosxy) dy = 0

(vi) cosx cos2 y dx+ 2 sinx sin y cos y dy = 0

(vii) (sinx sin y − xey)dy = (ey + cosx cos y) dx

(viii) −1

y
sin

(
x

y

)
dx+

x

y2
sin

(
x

y

)
dy = 0

(ix) (1 + y) dx+ (1− x) dy = 0

(x) (2xy3 + y cosx) dx+ (3x2y2 + sinx) dy = 0

(xi) dx =
y

1− x2y2
dx+

x

1− x2y2
dy

(3) Solve the following differential equations:

(i) (x2y − 2xy2) dx− (x3 − 3x2y) dy = 0

(ii) y − xdy
dx

= x+ y
dy

dx

(iii) (x4 + y4) dx− xy3 dy = 0

(iv) y2 dx+ (x2 − xy − y2) dy = 0).

(v) (2x− y)e
y
x dx+ (y + xe

y
x ) dy
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(4) Solve the following differential equations:

(i) y(xy + 2x2y2) dx+ x(xy − x2y2) dy

(ii) y(x2y2 + 2) dx+ x(2− 2y2x2) dy = 0

(iii) y(2xy+1) dx+x(1+2xy−x3y3) dy = 0.

(iv) y(xy − 3) dx+ x(3xy − 3) dy = 0.

(v) y(x2y2 − 3xy− 3) dx+ x(x2y2 − 2xy−
3) dy = 0

(5) (i) (x2 + y2 + 2x) dx+ (2y)dy = 0 (ii) (x2 + y2) dx− 2xy dy = 0

(6) Solve the following differential equations:

(i) (3x2y4 + 2xy) dx+ (2x3y3−x2)dy = 0.

(ii) (y4 + 2y) dx+ (xy3 + 2y4 − 4x)dy = 0

(iii) (x4 + y4)dx− xy3dy = 0

(7) Solve the following linear differential equations:

(i) x
dy

dx
− ay = x+ 1

(ii)
dy

dx
+ y = e−x

(iii) cos2 x
dy

dx
+ y = tanx

(iv) (1 + y2) dx = (tan−1 y − x) dy

(v) (x+ 1)
dy

dx
− ny = ex (x+ 1)n+1

(vi) (x2 + 1)
dy

dx
+ 2xy = 4x2

(8) Solve the following reducible to linear differential equations:

(i)
dy

dx
+

1

x
y = x2 y6

(ii)
dy

dx
+

2

x
y = 3x2 y

4
3

(iii)
dy

dx
+

xy

1− x2
= xy

1
2

(iv) 3x (1− x2) y2 dy

dx
+ (2x2− 1) y3 = ax3

(v) 3y2 dy

dx
+ 2xy3 = 4xe−x

2
.

(9) Find the particular solution of the following differential equations.

(i) y′ − y = ex, y(1) = 0

(ii) y′ + y = (1 + x)2, y(0) = 0

(iii) y′ − x3y = −4x3, y(0) = 6

(iv) y′ − ycot x = 2x − x2cot x, y
(π

2

)
=

π2

4
+ 1

(v) y′ −
(

1 +
3

x

)
y = x+ 2, y(1) = e− 1

(vi) y′ + y tanx = 2x cosx, y(0) = −1

(vii) xy′ = (1 + x)y, y(2) = 6e2.

(10) Solve the following differential equations that are linear in x.

(i)
dx

dy
= e−3y − 3x

(ii)
dx

dy
= 2 sin y − x

(iii)
dx

dy
= 2y(1− 2y + 2y−1x)

(iv)
dx

dy
= ey + x

(v) y
dx

dy
= 2x+ y3ey

1.5



48 CHAPTER 1. (USMT 101) CALCULUS I

1.6 Practical 1.6: Applications of Differential Equations,
Equations reduced to first order equations

1.6.1 Prerequisite Practical 1.6

(1) Orthogonal Trajectory: An orthogonal trajectory of a family of curves is a curve that
cuts all the members of the family at right angle.

(2) The simplest mathematical model of population growth is obtained by assuming that
the rate of increase of the population at any time is proportional to the size of the popu-
lation at that time. If we let P (t) denote the population at time t, then

dP

dt
= kP

where k is a positive constant. Separating the variables and integrating we get
P = P0 e

kt

where P0 denotes the population at t = 0 and P is a population at time t. We denote it
by P (t)
Thus P (t) = P0 e

kt

This law predicts an exponential increase in the population with time and gives a reason-
ably accurate description of the growth of certain algae, bacteria, and cell cultures. The
time taken for such a culture to double in size is called the doubling time. This is time
td when P = 2P0.
Substituting in the above equation, we get

2P0 = P0e
ktd

Dividing both sides by P0 and taking logarithms, we fine
ktd = log 2.

So that the doubling time is td = 1
k log 2.

(3) In a circuit, the voltage is denoted by V (t) and the current is denoted by i(t) where t is
the time.

The differential equation is L ∗ di
dt

+ R ∗ i = V (t). where L is the coefficient of

induction and R the resistance of the circuit. (R > 0, L > 0)

(4) Newton’s Law of Cooling: The rate of heat loss of a body is directly proportional to
the difference between the temperature of body itself and temperature of the surrounding

medium. The equation is
dT

dt
= −k(T − T0).

(5) Second-order differential equations reducible to the first order.

(i) If in a second-order equation the dependent variable y does not appear explicitly, the
equation is of the form F (x, y′, y′′) = 0. The substitution y′ = z reduces the given
equation into a first-order differential equation in z and from its solution, the solution
of the original equation can be obtained. For example, we will reduce 2xy′′ = 3y′ to
the first order and solve.

Put z =
dy

dx
. This implies

dz

dx
=
d2y

dx2
.
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Hence the given equation reduces to 2x
dz

dx
= 3z. That is,

dz

z
=

3

2

dx

x
.

ln z =
3

2
lnx+ ln c

z = x
3
2 c

dy

dx
= x

3
2 c

dy = x
3
2 cdx

y =
2

5
x

5
2 c+K

So, we will write the solution as y = c1x
5
2 + c2.

(ii) Another type of equations reducible to first order is F (y, y′, y′′) = 0, in which the
independent variable x does not appear explicitly. We substitute y′ = z. Differentiate

this again, we get,
d2y

dx2
=

dz

dx
=
dz

dy

dy

dx
=
dz

dy
z = z

dz

dy
. For example, we will solve

y y′′ + y′2 = 0. (we assume z 6= 0 for all x.)

yz
dz

dy
+ z2 = 0

y
dz

dy
− z

dz

z
− dy

y

ln z = − ln y + ln c

zy = c

dy

dx
y = c

ydy = cdx

y2

2
= cx+ k

y2 = 2cx+ 2k

The solution is y2 = c1x+ c2.

xxxxxxxxxxxx

1.6
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1.6.2 PRACTICAL 1.6

(A) Objective Questions

Choose correct alternative in each of the following:

(1) The equation of the orthogonal trajectories to the family of parabolas y2 = 2x+ c is (Here
c and k are arbitrary constants).

(a) y = ke−2x. (b) y = ke−x. (c) y = kex. (d) None of these.

(2) The number of bacteria in a certain culture grows at a rate that is proportional to the
number present. If the number increased from 500 to 2000 in 2 hr then the doubling time
is

(a) 1 hr. (b) 2 hrs. (c) 1/2 hr. (d) None of these.

(3) The equation of the orthogonal trajectories to the family of y = c(secx+ tanx) is (Here c
and k are arbitrary constants).

(a) y2 + 2 sinx = k. (b) y2− 2 sinx = k. (c) y2−2 cosx = k. (d) None of these.

(4) The equation of the orthogonal trajectories to the family of x − 4y = c is (Here c and k
are arbitrary constants).

(a) y + 4x = k. (b) 4y + 3x = k. (c) y + x = k. (d) None of these.

(5) The equation of the orthogonal trajectories to the family of x = cey
2

is (Here c and k are
arbitrary constants).

(a) e−x
2

= ky. (b) e−x
2

= ky2. (c) ex = ky. (d) None of these.

(6) A certain bacteria grows at a rate that is proportional to the number present. Let P0 be
the initial population present.

If it is found that the number doubles in 4 hours, then the population at the end of 12
hours is

(a) 8 ∗ P0. (b) 7 ∗ P0. (c) 9 ∗ P0. (d) None of these.

(7) A copper ball is heated to a temperature of 100◦C. Then at time t = 0 it is placed in
water that is maintained at a temperature of 30◦C. At the end of 3 min. the temperature
of the ball is reduced to 70◦C. The time at which the temperature of the ball is reduced
to 31◦C is

(a) approximately 23 minutes.

(b) approximately 20 minutes.

(c) approximately 25 minutes.

(d) None of these.
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(8) The initial concentration of a certain medication in human blood stream is 12mg/cm3. If
every hour the concentration is reduced by 14%, then the amount of medication in the
bloodstream (A), in mg/cm3, over time (t), in hours is

(a) 12(0.86)t. (b) 10(0.86)t. (c) 14(0.68)t. (d) None of these.

(9) An RLcircuit has an emf given by 3 sin 2t, a resistance of 10 Ω , an inductance of 0.5H,
and an initial current of 6 A. The current in the circuit at any time t is

(a) 10i = 1− e−50t. (b) i = 1− e−50t. (c) 10i = 1− e50t. (d) None of these.

(10) If we reduce y′′ = y′ to the first order differential equation then its solution is

(a) y = c1e
x + c2. (b) y = c1e

−x + c2. (c) y = c1e
x2 + c2. (d) None of these.

(11) If we reduce yy′ = 2y′2 to the first order differential equation then its solution is

(a) y = (c1x +
c2)−1.

(b) y = (c1x
2 +

c2x)−1.
(c) y = (c1x+ c2). (d) None of these.

(B) Descriptive Questions

(1) Find the orthogonal trajectories of each of the family of curves:

(i) x2 + y2 − 2cx = 0

(ii) y2 = cx3

(iii) x− 4y = c

(iv) x2 + y2 = c

(v) x2 − y2 = c

(vi) y2 = cx3

(vii) ex + e−y = c

(viii) y = c(secx+ tanx)

(ix) x3 = 3(y − c)
(x) x = cey

2

(xi) y = ce−mx m fixed

(xii) x2 − y2 = cx

(2) The number of bacteria in a certain culture grows at a rate that is proportional to the
number present. If the number increased from 500 to 2000 in 2 hr, determine the number
present after 12 hrs and find the doubling time. (Assume that when t = 0, P0 = 500)

(3) A certain population of bacterial is known to grow at a rate proportional to the amount
present in a culture that provides plentiful food and space. Initially there are 250 bacterial,
and after seven hours 800 bacteria are observed in the culture. Find an expression for the
approximate number of bacteria present in the culture at any time t. Also determine the
approximate number of bacteria that will be present in the culture described in the above
example after 24 hours and Determine the amount of time it will take for the bacteria
described in the above example to increase to 2500.

(4) The number of bacteria in a certain culture grows at a rate that is proportional to the
number present. Find an expression for the approximate number of bacteria in such a
culture if the initial number is 300 and if it is observed that the population has increased
by 20 percent after 2 hours. Also determine the number of bacteria that will be present in
the culture after 24 hours as well as after after one week. Further, determine the amount
of time it will take the culture to double its original population.

1.6
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(5) The initial concentration of a certain medication in human blood stream is 12mg/cm3. If
every hour the concentration is reduced by 14%, then the find the amount of medication
in the bloodstream (A), in mg/cm3, over time (t), in hours.

(Hint: The differential equation is
dA

dt
= kA for some constant of proportion k.)

(6) A certain bacteria grows at a rate that is proportional to the number present.

(i) If it is found that the number doubles in 4 hours, how many may be expected at the
end of 12 hours.

(ii) If there are 104 bacteria at the end of 3 hours and 4× 104 at the end of 5 hours, how
many were there initially?

(7) In a culture of yeast the amount of active ferment grows at a rate proportional to the
amount present. If the amount doubles in 1 hour, how many times the original amount

may be anticipated at the end of
11

4
hours?

(8) The population of certain country is known to increase at a rate proportional to the number
of people presently living in the country. If after 2 years the population has doubled, and
after 3 years the population is 20000, find the number of people initially leaving in the
country.

(9) Bacteria are placed in a nutrient solution and allowed to multiply. Food is plentiful but
space is limited, so competition for space will force the bacteria population to stabilize
at some constant level M. Determine an expression for the population at time t if the
growth rate of the bacteria is jointly proportional to the number of bacteria present and
the difference between M and the current population.

(Hint: The differential equation is
dP

dt
= kP (M − P ).)

(10) If the population of a country doubles in 20 years, in how many years will it triple under
the assumption that the rate of increase is proportional to the number of inhabitants?

(11) Reduce to the first order and solve:

(i) 2xy′′ = 3y′

(ii) y′′ = y′

(iii) y′′ + y′ = x+ 1

(iv) y′′ = 1 + y′2

(v) xy′′ + y′ = y′2

(12) Reduce to the first order and solve:

(i) yy′′ = 2y′2

(ii) yy′′ + y′2 = 0

(iii) y′′ + eyy′3 = 0

(iv) y′′ + 2y′2 = 0

(v) y′′ + y′3 cos y = 0

(vi) y′′ + (1 + y−1)y′2 = 0

(13) A particle moves on a straight line so that its acceleration is equal to three times its
velocity. At t = 0 its displacement from the origin is 1m and its velocity is 1.5 m/s. Find
the time when the displacement is 10m.
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1.7 Practical 1.7: Miscellaneous Theory Questions

1.7.1 Practical 1.7: Miscellaneous Theory Questions on UNIT 1

(1) Prove the following properties of real numbers.

(i) Additive identity is unique.

(ii) Multiplicative identity is unique.

(iii) Every real number has unique additive inverse.

(iv) Every non-zero real number has unique multiplicative inverse.

(2) Let a, b ∈ R. Then

(i) there is exactly one x ∈ R such that a+ x = b.

(ii) if a 6= 0, there is exactly one x ∈ R such that ax = b.

(3) If a, b, c ∈ R, then using only the algebraic properties, prove the following.

(i) −(−a) = a

(ii) (a−1)−1 = a

(iii) a0 = 0 = 0a

(iv) (−a)b = −(ab) = a(−b)
(v) (−a)(−b) = ab

(vi) a(b− c) = ab− ac

(vii) If ab = 0 then a = 0 or b = 0

(viii) If a 6= 0, b 6= 0, then (ab)−1 = b−1a−1

(ix) If a 6= 0, then (−a)−1 = −a−1

(x) −0 = 0

(xi) 1−1 = 1

(4) x, y, z are real numbers, then prove the following.

(i) x < 0 =⇒ −x > 0

(ii) x < y and y < z =⇒ x < z

(iii) x < y =⇒ x+ z < y + z

(iv) x < y and z > 0 =⇒ xz < yz

(v) x < y and z < 0 =⇒ xz > yz

(vi) x > 0, y < 0 =⇒ xy < 0

(vii) 1 > 0.

(viii) If x > 0, then x−1 > 0 and if x < 0
then x−1 < 0.

(ix) If 0 < x < y, then 0 < y−1 < x−1.

(x) If x < y < 0, then y−1 < x−1 < 0.

(5) Define absolute value of a real number and prove the following.
For x, y ∈ R, the following properties hold.

(i) |x| ≥ 0.

(ii) |x| = 0 ⇐⇒ x = 0

(iii) |x| = | − x|.
(iv) |x| = max{x,−x}.
(v) −|x| ≤ x ≤ |x|.
(vi) |xy| = |x||y|.

(vii) If y 6= 0 then

∣∣∣∣1y
∣∣∣∣ =

1

|y|
.

(viii) If y 6= 0 then

∣∣∣∣xy
∣∣∣∣ =
|x|
|y|
.

(ix) If r ∈ R, r > 0, then |x| ≤ r if and only
if −r ≤ x ≤ r.

(x) |x+ y| ≤ |x|+ |y|.
(xi) |x− y| ≤ |x|+ |y|.

(xii) |x− y| ≥
∣∣∣|x| − |y|∣∣∣.

1.7
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(6) State and prove AM-GM Inequality for a, b ∈ R+.

(7) If a1, a2, · · · , an are non-negative real numbers, then prove that
a1 + a2 + · · ·+ an

n
≥ (a1a2 · · · an)

1
n .

(8) State and prove Cauchy Schwartz Inequality for a1, a2, · · · , an and b1, b2, · · · , bn any
real numbers.
If a1, a2, · · · , an and b1, b2, · · · , bn are any real numbers then(

n∑
k=1

akbk

)2

≤

(
n∑
k=1

ak
2

)(
n∑
k=1

bk
2

)
.

(9) State and prove Hausdorff Property.

(10) Define a bounded set in R, lower bound and upper bound of a subset of R, infimum
(g.l.b.) and supremum (l.u.b.)of a subset of R and prove that a nonempty set S ⊆ R
is bounded if and only if there is M ∈ R+ such that, |x| ≤M ∀ x ∈ S.

(11) State L.U.B. Axiom. Prove that every nonempty set S of real numbers that is
bounded below has an infimum in R.

(12) Prove the following:

(i) If a non-empty subset of R has a supremum then it is unique.

(ii) If a non-empty subset of R has an infimum then it is unique.

(13) Let S be a nonempty subset of R such that S is bounded above. Let M ∈ R. Then
prove that M = supS if and only if

(I) M is an upper bound of S.
(II) for any ε > 0, there is an element a ∈ S such that M − ε < a ≤M .

(14) Let S be a nonempty subset of R such that S bounded below. Let m ∈ R.
Then prove that m = inf S if and only if

(I) m is a lower bound of S.
(II) for any ε > 0, there is an element a ∈ S such that m ≤ a < m+ ε.

(15) Prove the following.

(i) S is a non-empty subset of R. If S is bounded above then the set of all upper
bounds of S is bounded below.

(ii) S is a non-empty subset of R. If S is bounded below then the set of all lower
bounds of S is bounded above.

(16) Let S ⊆ R be non-empty and let α ∈ R. Prove that α = supS if and only if for every

n ∈ N, the number α− 1

n
is not an upper bound of S but α +

1

n
is an upper bound

of S.

(17) Let A,B be nonempty subsets of R.

(i) If A ⊆ B and B is bounded then prove that A is also bounded.

(ii) If A ⊆ B, and B is bounded, then prove that inf B ≤ inf A ≤ supA ≤ supB.

(iii) If A and B are bounded then:

(a) A∪B and A∩B are also bounded.

(b) inf(A ∪B) = min{inf A, inf B}.
(c) sup(A ∪B) = max{supA, supB}.

(d) inf(A ∩B) ≥ max{inf A, inf B}.
(e) sup(A ∩B) ≤ min{supA, supB}.
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(14) State and Prove Archimedean Property. (Given any x ∈ R, there is n ∈ N such that
n > x.)

(15) Show that there is no rational number r such that r2 = p; p is a prime.

(16) State and prove Density theorem. ( If x and y are any real numbers with x < y, then
there exists a rational number r such that x < r < y. Moreover this number r can always
be selected so that it is nonzero.)

(17) If x and y are any real numbers with x < y, then there exists an irrational number s such
that x < s < y.

1.7.2 Practical 1.7: Miscellaneous Theory Questions on UNIT II

(1) Define a bounded sequence, monotonic increasing sequence, monotonic decreasing se-
quence, monotonic sequence.

(2) Define a convergent sequence. Prove that every convergent sequence converges to a unique
limit.

(3) Prove that every convergent sequence is bounded.

(4) Algebra of Convergent Sequences: Let xn −→ p and yn −→ q. Then using ε−n0 definition
prove the following.

(i) xn + yn −→ p+ q,

(ii) xn − yn −→ p− q,
(iii) rxn −→ rp for any r ∈ R,

(iv) xnyn −→ pq,

(v) |xn| −→ |p|,

(vi) If xn 6= 0 ∀ n ∈ N and p 6= 0 then
1

xn
−→ 1

p
.

(vii) If xn −→ p and yn −→ q, yn 6= 0 ∀ n ∈ N and q 6= 0 then
xn
yn
−→ p

q
.

(ix) If there is n0 ∈ N such that xn ≤ yn for all n ≥ n0, then p ≤ q.

(5) State and prove Sandwich Theorem for sequences.( Let (xn), (yn) and (zn) be sequences
and p ∈ R be such that xn ≤ zn ≤ yn for all n ∈ N and xn −→ p as well as yn −→ p. Then
zn −→ p.)

(6) Prove the Convergence of the following standard sequences:

(1) lim
n−→∞

1

1 + na
= 0 ∀ a > 0.

(2) lim
n−→∞

bn = 0 ∀ b, |b| < 1.

(3) lim
n−→∞

c
1
n = 1, ∀ c > 0.

(4) lim
n−→∞

n
1
n = 1

(7) Define a monotonic sequence. Prove the following.

(i) If a monotonically increasing sequence is bounded above then it is convergent and it
converges to the supremum of {xn : n ∈ N}.

1.7
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(ii) If a monotonically decreasing sequence is bounded below then it is convergent and it
converges to the infimum of {xn : n ∈ N}.

(iii) A monotonic sequence is convergent if and only if it is bounded.

(8) prove that the sequence

(
1 +

1

n

)n
is convergent.

(9) Define a Cauchy sequence. Prove that every Cauchy sequence is bounded.(converse not
true).

(10) Every convergent sequence is Cauchy.

(11) Define a subsequence of a sequence. Prove that a subsequence of a convergent sequence is
convergent and it converges to the same limit as that of the sequence.

1.7.3 Practical 1.7: Miscellaneous Theory Questions on UNIT III

(1) Define Exact differential equation of first order and first degree.
State and prove the necessary and sufficient condition for M(x, y)dx + N(x, y)dy = 0 to
be exact.

(2) Prove that the integrating factor of the first order linear equation
dy

dx
+ p(x)y = q(x) is

e
∫
p(x) dx and its solution is y e

∫
p(x)dx =

∫
e
∫
p(x)dxq(x) dx+ c.

(3) Show that the substitution v = y1−n, reduces the Bernoulli’s differential equation
dy

dx
+

Py = Qyn,
(where n 6= 0, 1 and P,Q are continuous functions of x on an interval I) to a linear first

order O.D.E. in the variables x and v. Hence solve the O.D.E.
dy

dx
+

2

x
y = 3x2 y

4
3 .

(4) Define the following terms:
(a) Exact Differential Equation of first order first degree. (b) Integrating Factor.
Also state 4 rules to find an integrating factor of a non-exact O.D.E.

xxxxxxxxxxxx
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Chapter 2

(USMT 102) ALGEBRA I

2.1 Practical 2.1: Division Algorithm and Euclidean Algo-
rithm

2.1.1 Prerequisite of Practical 2.1:

(1) Division Algorithm : Given integers a and b, with b > 0, there exist unique integers q
and r satisfying a = bq + r, 0 ≤ r < b. The integers q and r are called, respectively, the
quotient and remainder in the division of a by b.

(2) If a and b are integers, with b 6= 0, then there exist unique integers q and r such that
a = qb+ r, 0 ≤ r < |b|.

(3) An integer b is said to be divisible by an integer a 6= 0, in symbol a | b, if there exists
some integer c such that b = ac.
We write a 6 | b to indicate that b is not divisible by a.

(4) For integers a, b, c, the following hold: (divisors are assumed to be nonzero)

(i) a | 0, 1 | a, a | a.
(ii) a | 1 if and only if a = ±1.

(iii) If a | b and c | d, then ac | bd.
(iv) a | b and b | a if and only if a = ±b.

(v) If a | b and b 6= 0, then |a| ≤ |b|.

(vi) If a | b and a | c, then a | (bx+ cy) for
arbitrary x, y ∈ Z.

(5) Greatest Common Divisor: Let a and b be given integers, with atleast one of them
different from zero. The greatest common divisor of a and b, denoted by gcd (a, b), is the
positive integer d satisfying
(1) d | a and d | b.
(2) if c | a and c | b, then c ≤ d.

(6) Given integers a and b, not both of which are zero, there exist integers x and y such that
gcd (a, b) = ax+ by.

(7) If a and b are given integers, not both zero, then the set T = {ax + by : x, y ∈ Z} is
precisely the set of all multiples of d = gcd (a, b).

2.1
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(8) Two integers a and b not both of which are zero, are said to be relatively prime whenever
gcd(a, b) = 1.

(9) Let a and b be integers, not both zero. Then a and b are relatively prime if an only if there
exist integers x and y such that 1 = ax+ by.

(10) If gcd (a, b) = d, then gcd(a/d, b/d) = 1.

(11) If a | c and b | c with gcd(a, b) = 1, then ab | c.

(12) Euclid’s Lemma: If a | bc, with gcd (a, b) = 1, then a | c.

(13) Let a, b be integers, not both zero. For a positive integer d, d = gcd (a, b) if and only if
(1) d | a and d | b.
(2) whenever c | a and c | b, then c | d.

(14) If k ∈ Z, k > 0, then gcd(ka, kb) = k gcd(a, b).

(15) For any integer k 6= 0, gcd(ka, kb) = |k| gcd (a, b).

(16) The Least common multiple of two nonzero integers a and b, denoted by lcm (a, b), is
the positive integer m satisfying
(1) a | m and b | m,
(2) If a | c and b | c, with c > 0, then m ≤ c.

(17) For positive integers a and b, gcd(a, b) ∗ lcm(a, b) = ab.

2.1.2 PRACTICAL 2.1

(A) Objective Questions

(1) If n = 73 ∗ 54 ∗ 35,m = 105 ∗ 105 then gcd (n,m) =

(a) 2625 (b) 2645 (c) 1 (d) None of these

(2) When a number is divided by 893 the reminder is 193. What will be the reminder when
it is divided by 47?

(a) 19 (b) 5 (c) 33 (d) 23

(3) a+ b = 156, (a, b) = 13. The number of such pairs is..........

(a) 2 (b) 5 (c) 4 (d) 3

(4) If (a, b) = 2, (b, 4) = 2 then (a+ b, 4) = ............

(a) 1 (b) 2 (c) 4 (d) None of these

(5) If gcd (a, b) = lcm (a, b) then the following is true.
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(a) a > b (b) a = b (c) a+ b = 1 (d) None of these

(6) Which of the following is true

(i)
a(a+ 1)

2

(ii)
a(a+ 1)(a+ 2)

3

(iii)
a(a+ 1)(a+ 3)

4

(iv)
a(a+ 1)(a+ 2)

4

(a) (i)

(b) (ii)

(c) (i) and (ii) both

(d) (iii) and (iv) both

(7) gcd of 12006 and −975 is

(a) 1 (b) −1 (c) 4 (d) None of these

(8) For any n ∈ N. (55n+ 2, 22n+ 1) = .........

(a) 11 (b) 0 (c) 1 (d) None of these

(9) a1 = 4, an = 4an−1, n > 1 then a100 mod 7 = ................

(a) 2 (b) 3 (c) 4 (d) 5

(10) If the least common multiple of two nonzero integers a and b, is m then

(a) m|a and m|b (b) a|m and b|m (c) m = ab (d) None of these

(11) If the least common multiple of two nonzero integers a and b, is m. If a|c and b|c, with
c > 0, then

(a) m = c (b) m > c (c) m ≤ c (d) None of these

(12) Given integers a and b, with b > 0 then

(a) a = qb+ r, 0 ≤ r ≤ b
(b) a = qb+ r, 0 ≤ r < 1

(c) a = qb+ r, 0 ≤ r < a

(d) None of these

(13) If If a | 1, then

(a) a = ±1 (b) a = 0 (c) a = 1 (d) None of these

(14) If a | b and b | a then

(a) a = b (b) a = ±b (c) a = b = 0 (d) None of these

(15) a | b and a | c then

2.1
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(a) a | bx+ cy (b) a | 1 (c) a = 1 (d) None of these

(16) If a | b with b 6= 0

(a) |a| = |b| (b) |a| > |b| (c) |a| ≤ |b| (d) None of these

(17) Let gcd(a, b) = d, then

(a) d | a only (b) d | b only (c) d | a and d | b (d) None of these

(18) Let gcd(a, b) = d. If c | a and c | b, then

(a) c ≤ d (b) c ≥ d (c) c = 1 (d) None of these

(B) Descriptive Questions

(1) For integers a, b and c prove the following

(i) (a, (b, c)) = ((a, b), c)

(ii) 9|b+ c and 9|b− c⇒ 9|50b− 22c.

(iii) (a, c) = d, a|b, c|b⇒ ac|bd
(iv) a|c, b|c and (a, b) = 1⇒ ab|c
(v) (a, b) = 1 and a|bc⇒ a|c

(vi) 2|a(a+ 1) and 3|a(a+ 1)(a+ 2)

(vii) (a, 4) = 2, (b, 4) = 2⇒ (a+ b, 4) = 4.

(2) Show that any integer of the form 6k + 5 is also fo the form 3k + 2, but not conversely.

(3) Use the Division Algorithm to establish that

(i) Every odd integer is either of the form 4k + 1 or 4k + 3.

(ii) the square of any integer is either of the form 3k or 3k + 1.

(iii) the cube of any integer ie either of the form 9k, 9k + 1 or 9k + 8.

(4) Prove that no integer in the sequence 11, 111, 1111, 11111, . . . is a perfect square.
(Hint 11 = 8+3, 111 = 108+3, 1111 = 1000+108+3, 11111 = 104+103+108+3, 111111 =
105 + 104 + 103 + 108 + 3 · · · . Each is of the form 4k + 3. But square of every integer is
either of the form 4k or 4k + 1. )

(5) Prove or disprove: if a | (b+ c), then either a | b or a | c.

(6) Prove that, for any integer a, one of the integers a, a+ 2, a+ 4 is divisible by 3. [Hint: By
the Division Algorithm the integer a must be of the form 3k or 3k + 1 or 3k + 2.]

(7) Prove that the sum of the squares of two odd integers cannot be a perfect square.

(8) Show that the difference between the cubes of two consecutive integers is never divisible
by 2.
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(9) Prove that, for a positive integer n and any integer a, gcd(a, a + n) divides n; hence
gcd(a, a+ 1) = 1.

(10) Given integers a and b, prove that there exist integers x and y for which c = ax + by if
and only if gcd(a, b)|c.

(11) Prove that if gcd (a, b) = 1 and gcd (a, c) = 1, then gcd (a, bc) = 1.

(12) If gcd (a, b) = 1 and c | a then prove that gcd (c, b) = 1.

(13) If gcd (a, b) = 1 then prove that gcd (ac, b) = gcd (c, b).

(14) If gcd (a, b) = 1 and c | (a+ b) then gcd (a, c) = gcd (b, c) = 1.

(15) Find gcd (143, 227), gcd (306, 657) and gcd (272, 1479).

(16) Use the Euclidean Algorithm to obtain integers x and y satisfying

(i) gcd (56, 72) = 56x+ 72y.

(ii) gcd (24, 138) = 24x+ 138y.

(iii) gcd (119, 272) = 119x+ 272y.

(iv) gcd (1769, 2378) = 1769x+ 2378y.

(17) Find lcm (143, 227), lcm (306, 657) and lcm (272, 1479).

(18) Prove the following

(i) GCD of 2 consecutive integers is 1

(ii) GCD of 2 consecutive odd integers is 1

(iii) GCD of 2 consecutive even integers is 2

(iv) (ka, kb) = |k|(a, b) for any integer k

(19) For any natural number n prove that the following pairs are relatively prime.

(i) 2n+ 1, 9n+ 4

(ii) 5n+ 2, 7n+ 3

(iii) 55n+ 2, 22n+ 1

(iv) 21n+ 4, 14n+ 3

(20) The Fibonacci no. Fn is defined as F1 = 1, F2 = 2, Fn+1 = Fn +Fn−1 ∀n ≥ 2. Then prove
that (Fn, Fn+1) = 1.

(21) Prove that if for integers a, b, (a, b) = 1 then

(i) (a+ b, a− b) = 1 or 2

(ii) (a+ b, a2 + b2) = 1 or 2

(iii) (a2, b2) = 1

(iv) (2a+ b, a+ 2b) = 1 or 3

(22) Find g c d, expresses it in form ma+ nb.

2.1
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(i) 143, 227

(ii) −1975,−851

(iii) 725, 441

(iv) 325, 26

(v) −1122, 215

(vi) 567, 123

(vii) 3467, 1123

(viii) 560, 124

(ix) 45,−9012

(x) 879, 1216

(xi) 12006,−1975

(xii) 432, 127

(23) For a, b 6= 0 prove (a, b) = [a, b] iff a = b.

(24) Find positive integers a and b such that (a, b) = 10 and [a, b] = 100.

(25) Find LCM of 482 and 1687.

xxxxxxxx

2.2 Practical 2.2: Prime numbers, Fundamental Theorem of
Arithmetic, Congruence

2.2.1 Prerequisite of Practical 2.2

(1) An integer p > 1 is called a prime number, or a prime, if its only positive divisors are 1
and p.
An integer greater than 1 which is not a prime is called composite.

(2) If p is a prime and p | ab, then p | a or p | b.

(3) If p is a prime and p | a1a2 · · · an, then p | ak for some k, 1 ≤ k ≤ n.

(4) If p, q1, q2, · · · , qn are all primes and p | q1q2 · · · qn, then p = qk for some k, where 1 ≤ k ≤ n.

(5) Fundamental Theorem of Arithmetic: Every positive integer n > 1 can be expressed
as a product of primes; this representation is unique, apart from the order in which the
factors occur.

(6) Any positive integer n > 1 can be written uniquely in a canonical form n = pk11 p
k2
2 · · · p

kr,
r

where, for i = 1, 2, · · · , r, each ki is a positive integer and each pi is a prime with p1 <
p2 < · · · < pr.

(7) Euclid’s Theorem: There are an infinite number of primes.

(8) There is an infinite number of primes of the form 4n+ 3.

(9) There is an infinite number of primes of the form 4n+ 1.

(10) There is an infinite number of primes of the form 6n− 1.

(11) Let n be a positive integer. Two integers a and b are said to be congruent modulo n,
written as a ≡ b(mod n) if n divides the difference a − b; that is, a − b = kn for some
integer k.
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(12) For arbitrary integers a and b, a ≡ b(mod n) if and only if a and b leave the same nonneg-
ative remainder when divided by n.

(13) Let n > 0 be a fixed integer and a, b, c, d be arbitrary integers. Then the following prop-
erties hold:

(i) a ≡ a(mod n).

(ii) If a ≡ b(mod n), then b ≡ a(mod n).

(iii) If a ≡ b(mod n) and b ≡ c(mod n) then a ≡ c(mod n).

(iv) If a ≡ b(mod n) and c ≡ d(mod n) then a+ c ≡ b+ d(mod n) and ac ≡ bd(mod n).

(v) If a ≡ b(mod n), then a+ c ≡ b+ c(mod n) and ac ≡ bc(mod n).

(vi) If a ≡ b(mod n), then ak ≡ bk(mod n) for any positive integer k.

(14) If ca ≡ cb(mod n), then a ≡ b(mod n/d) where d = gcd(c, n).

(15) If ca ≡ cb(mod n) and gcd(c, n) = 1, then a ≡ b(mod n).

(16) If ca ≡ cb(mod p) and p 6 | c, where p is a prime number, then a ≡ b(mod p).

(17) An equation of the form ax ≡ b( mod n) is called a linear congruence, and an integer
x0 is called a solution of ax ≡ b( mod n) if ax0 ≡ b( mod n).

(18) The linear congruence ax ≡ b( mod n) has a solution if and only if d | b, where d =
gcd (a, n). If d | b, then it has d mutually incongruent solutions modulo n.

(19) Consider the linear congruence ax ≡ b( mod n) such that d | b, where d = gcd (a, n). If
x0 is one solution of the congruence ax ≡ b( mod n), then all the d incongruent solutions

are x0, x0 +
n

d
, x0 + 2 ∗ n

d
, · · · , x0 + (d− 1) ∗ n

d
.

(20) If gcd (a, n) = 1, then the linear congruence ax ≡ b( mod n) has a unique solution modulo
n.

(21) Suppose we want to solve the linear congruence 6x ≡ 15 mod 21.

Step I Find gcd(a, n). Here gcd(a, n) = gcd(6, 21) = 3.

Step II Check whether d | b or not. Here d = 3, b = 15 and hence d | b.
Step III If no, then the linear congruence doesn’t have a solution. We stop here.

Step IV If yes, then, we know that there are d incongruent solutions modulo n. Here,
d = 3 =⇒ 6x ≡ 15 mod 21 has 3 incongruent solutions modulo 15.

Step V Divide the given linear congruence by d. So, we divide by 3. We will get the
equivalent congruence 2x ≡ 5 mod 7. Since (2, 7) = 1, this congruence has unique
solution modulo 7. Find that solution. x ≡ 6 mod 7 is the unique solution of this
congruence. We select x0 = 6.

Step VI Original congruence was modulo 21. Its all d = 3 incongruent solutions modulo

21 are obtained by taking t = 0, 1, 2, in the formula x = x0 + t∗ n
d
. The 3 incongruent

solutions modulo 21 are 6, 6 + 1 ∗ 7, 6 + 2 ∗ 7, that is, 6, 13, 20.

2.2
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Step VII In terms of congruence, the 3 incongruent modulo 21 solutions are x ≡ 6
mod 21, x ≡ 13 mod 21, x ≡ 20 mod 21.

Step VIII Rough Work: We substitute each of 6, 13, 20 in the given congruence and
verify.

Put x = 6 in L.H.S. of
6x ≡ 15 mod 21.

6x ≡ 6 ∗ 6 mod 21

≡ 36 mod 21

≡ 15 mod 21

Put x = 13 in L.H.S. of
6x ≡ 15 mod 21.

6x ≡ 6 ∗ 13 mod 21

≡ 6 ∗ (−8) mod 21

≡ −48 mod 21

≡ −6 mod 21

≡ 15 mod 21

Put x = 20 in L.H.S. of
6x ≡ 15 mod 21.

6x ≡ 6 ∗ 20 mod 21

≡ 6 ∗ (−1) mod 21

≡ −6 mod 21

≡ 15 mod 21

Note: x ≡ 6 mod 21 implies x ∈ {· · · ,−26,−15, 6, 27, 31, · · · }. Similarly x ≡ 13 mod 21
includes x ∈ {· · · ,−29,−8, 13, 34, 55, · · · } and so on.

2.2.2 PRACTICAL 2.2

(A) Objective Questions

Choose correct alternative in each of the following:

(1) Which one of the following is a prime number?

(a) 567 (b) 451 (c) 701 (d) None of these

(2) If p is a prime such that p |(11 ∗ 17 ∗ 23) and p 6 | 391 then

(a) p = 4301 (b) p = 17 (c) p = 23 (d) p | 253

(3) If p is a prime and p |(11 ∗ 17 ∗ 23) and p 6 | 391 then

(a) p = 4301 (b) p = 17 (c) p = 23 (d) p = 11

(4) If p1, p2, p3, q1, q2, q3 are primes and n = p1 ∗ p2 ∗ p3 = q1 ∗ q2 ∗ q3 where p1 ≤ p2 ≤ p3, q1 ≥
q2 ≥ q3 then

(a) p1 = q1, p2 = q2, p3 = q3

(b) p1 = q3, p2 = q2, p3 = q1

(c) p1 6= q1, p2 6= q2, p3 6= q3

(d) None of these.

(5) If p is a prime then
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(a)
√
p =

a

b
for some a, b ∈ Z, b 6= 0

(b)
√
p ∈ Z.

(c)
√
p is irrational

(d) None of these.

(6) If n3 − 1 is a prime then n =

(a) 7 only

(b) 2 only

(c) 5 only

(d) there can be more than one solution.

(7) If p is a prime of the form 3n+ 1, n ≥ 1 then p is also of the form

(a) 4m+ 3,m ≥ 1 (b) 6m+ 1,m ≥ 1 (c) 5m+ 2,m ≥ 1 (d) None of these

(8) If n is of the form 3m+ 2 then n has a prime factor of the form

(a) 3m+ 1 (b) 3m (c) 3m+ 2 (d) None of these

(9) If gcd (a, b) = p where p is a prime, then gcd(a2, b) is

(a) p or p2 (b) p (c) p2 (d) None of these

(10) 25 + 37 ≡ ? mod 12.

(a) 11 (b) 0 (c) 62 (d) None of these

(11) 23 ∗ 43 ≡ ? mod 8

(a) 5 (b) 12 (c) 6 (d) None of these

(12) If 9x ≡ 1 mod 13 then x =

(a) x ≡ 3 mod 13 (b) x ≡ 4 mod 13 (c) x ≡ 5 mod 13 (d) None of these

(13) 220 ≡ ? mod 41

(a) 1 (b) 2 (c) 3 (d) None of these

(14) 1! + 2! + 3! + · · ·+ 100! ≡ ? mod 12

(a) 7 (b) 8 (c) 9 (d) None of these

(15) If a ≡ b mod n and m | n then a ≡ ? mod m

(a) bn (b) Y (c) bm (d) None of these

(16) If a ≡ b mod n and c > 0 then ca ≡ ? mod n

2.2
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(a) c
b (b) c

a (c) ca (d) None of these

(17) The number of mutually incongruent solutions modulo 30 of 9x ≡ 31 mod 30 is

(a) 3 (b) 1 (c) 5 (d) None of these

(B) Descriptive Questions

(1) Solve the following linear congruences:

(i) 25x ≡ 15( mod 29).

(ii) 9x ≡ 21( mod 30).

(iii) 5x ≡ 2( mod 26).

(iv) 36x ≡ 8( mod 102).

(v) 34x ≡ 60( mod 98).

(vi) 140x ≡ 133( mod 301)

(2) Find all prime p and q such that

(i) p− q = 3.

(ii) p2 − 2q2 = 1.

(3) If p and p2 + 2 are prime show that p3 + 2 is prime.

(4) If 2n + 1 is an odd prime for some integers n then prove that n is power of 2.

(5) If p is a prime of the form 3n+1, n ≥ 1 then show that p is also of the form 6m+1,m ≥ 1.

(Hint : p = 3n+1 for some n ∈ Z. Now n = 2k or n = 2k+1. If n = 2k+1 then p = 6k+4
but then 2|p and so p = 2 contradiction as p = 3n+ 1.)

(6) Prove that each integer of the form 3n+ 2 then n has a prime factor of this form.
(Hint: Let a = 3m+ 1 for some m ∈ Z. Let a = p1p2 · · · pr be the prime factorization of a.
If pi = 3 then 3 | a =⇒ 3 | (3n+ 2). This is a contradiction. Every pi is of the form 3n+ 1
then the product of these factor will also be of the form 3n + 1. This is a contradiction.
Hence there exists at least one prime factor of a of the form 3n+ 2. )

(7) Prove that the only prime of the form n3 − 1 is 7.
(Hint: p = n−1 =⇒ p = (n − 1)(n2 + n + 1). But p is a prime. Hence every divisor of p
must be either 1 or p. If n− 1 = p then n = p + 1 and hence p = (p + 1)2 − 1. We get a
contradiction here. Hence n− 1− 1.)

(8) Prove that the only prime p for which 3p+ 1 is a perfect square is p = 5.
(Hint: 3p+ 1 = x2. So, x 6= 0. Also, 3p = x2 − 1 = (x− 1)(x+ 1). So 3 | ((x− 1)(x+ 1)).
As 3 is a prime, 3 |(x− 1) or 3 | (x+ 1). One case gives a contradiction.)

(9) Prove that n4 + 4 is composite for each n > 1.

(10) Find all primes that divide 50!.

(11) Let n be a positive integer and p1, p2, · · · , pn be prime numbers greater than 5 such that
6 | p2

1 + p2
2 + · · ·+ p2

n show that 6 | n.
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(12) Prove that there are no integers x, y satisfying (x, y) = 3 and x+ y = 100.

(13) Prove that 4 - a2 + 2 for any integer a.

(14) Prove or disprove

(i) If p is a prime, p | a and p | a2 + b2 then p|b.
(ii) If a2 | c3 then a | c

(15) If p and q are primes ≥ 5 prove 24 | p2 − q2.

(16) Show that 3
√

100 is irrational.

(17) Prove the following

(i) 10! ≡ −1(mod 11)

(ii) 18! ≡ −1 mod(437)

(iii) 7 | 22225555 + 55552222

(iv) 88641 ≡ 3(mod 86)

(v) 89 | 244 − 1

(vi) 2340 ≡ 1(mod 31)

(vii) 333424 ≡ 1(mod 7).

xxxxxxxxxxx

2.3 Practical 2.3: Functions, Bijective and Invertible func-
tions, Composition of functions

2.3.1 Prerequisite for Practical 2.3

(1) Cartesian Product: If X and Y are two non-empty sets then the cartesian product
of X and Y is denoted by X × Y and is defined as X × Y = {(x, y) : x ∈ X and y ∈ Y }.
The pair (x, y) is called as an ordered pair.

(2) If X and Y are finite sets having m and n elements respectively, then X×Y is a set having
m× n elements.

(3) If X and Y are two non-empty sets then a relation from X to Y is a subset of X × Y.
If we denote a relation by R then R ⊆ X × Y.
For example: IfX = {a, b} and Y = {1, 2, 3}, thenX×Y = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.
Let R1 = {(a, 1), (b, 3), (a, 3)}. Then R1 is a relation from X to Y. We say that a is related
to 1 and 3, and b is related to 3 under R1.
Let R2 = {(a, 2), (b, 3). Then R2 is a relation from X to Y. We say that a is related to 2
and b is related to 3 under R2.

2.3
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(4) Function: Let X and Y be two non-empty sets. A function from X to Y is a subset f
of X × Y with the property that for each x ∈ X, there is a unique y ∈ Y such (x, y) ∈ f.
The set X is called the domain of f and Y the codomain of f .
Usually, we write f : X −→ Y to indicate that f is a function from X to Y . Also, instead
of (x, y) ∈ f, we write y = f(x), and call f(x) the value of f at x. This is also indicted by
writing x 7→ f(x), and saying that f maps x to f(x).

(5) Both, a relation and a function, are subsets of X × Y and every function f : X −→ Y is a
relation. But a relation need not be a function. Above relation R1 is not a function as a
is related to two elements from Y under R1.

(6) Let f : X −→ Y is a function. The range of f is defined as f(X) = {f(x) : x ∈ X}.
Also, if y = f(x) then y is called the image of x and x is called a pre-image of y.

(i) f : R −→ R, f(x) = x2. Here domain of f = R, codomain of f = R and range of
f = {f(x) : x ∈ R} = {x2 : x ∈ R} = [0,∞).
For x = 2 ∈ R (domain of f) f(2) = 4. So 4 is the image of 2. 2 is a pre-image of 4.
Since f(−2) is also 4, we have, 2,−2 are two pre-images of 4.
Now consider y = −3 ∈ R(codomain of f). There is no x ∈ R (domain of f) such
that x2 = −3. Hence −3 does not have a pre-image.

(ii) Let X,Y be not empty sets and c ∈ Y. Define a function f : X −→ Y as f(x) = c for
all x ∈ X. Then f is called a constant function.

(iii) Absolute value function: | | : R −→ R, |x| =

{
x if x ≥ 0,

−x if x < 0.
We can verify that 4 and −4 are two pre-images of 4 and −5 does not have any
pre-image in the domain R.

(iv) Identity function: Let X be a non-empty set. Let iX be a function defined as
iX : X −→ X, iX(x) = x. Then iX is called the identity function on X. Here every
element in X (codomain of iX) has exactly one pre-image in X (domain of iX).
Domain of iX = X, codomain of iX = X and range of iX = X.

(v) Projection function: Let X and Y be non-empty sets. The projection function πX
and πY are defined as

πX : X × Y −→ X,πX

(
(x, y)

)
= x and

πY : X × Y −→ Y, πY

(
(x, y)

)
= y.

Range of πX = X and Range of πY = Y.

(vi) Floor function: The floor function bxc : R −→ R is defined as bxc = greatest integer ≤
x. For example b1.5c = 1, b−2.7c = −3.

(vii) Ceiling function: The ceiling function dxe : R −→ R s defined as dxe = least integer ≥
x. For example d1.5e = 2, d−2.7e = −2.

(viii) Characteristic function: Let X be a non empty set and A ⊆ X. Define f : X −→ R

as follows: f(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Then f is called as a characteristic function on X.

(7) Injective or one-one function : A function f : X −→ Y is said to be injective or
one-one if f maps distinct points to distinct points, that is, x1, x2 ∈ X, f(x1) = f(x2) =⇒
x1 = x2.
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For example, the identity iX is injective but the absolute value function is not injective.
Projection maps are not injective.

(8) Surjective or onto function: A function f : X −→ Y is said to be surjective or onto
if every element in Y has at least one pre-image in X. That is, f is surjective if f(X) = Y.
For example, the identity iX , projections maps are surjective but the absolute value func-
tion, floor function, ceiling function as defined above are not surjective. Also above f is
not surjective as 7 ∈ Y does not have a pre-image in X.

(9) Bijective function: A function f : X −→ Y is said to be bijective if it is injective and
surjective.
The identity function defined as iX : X −→ X, iX(x) = x for all x ∈ X, is bijective.

(10) Equality of two functions: Let f : X −→ Y and g : X −→ Y be two functions. We say
that the function f is equal to the function g if f(x) = g(x) for all x ∈ X, and write as
f = g on X.

(11) Composite function: If f : X −→ Y and g : Y −→ Z are functions. Then the function

h : X −→ Z, defined by h(x) = g
(
f(x)

)
for all x ∈ X, is called the composite of f and

g and is denoted by g ◦ f.

Remarks 2.3.1

(i) If f : X −→ Y and g : Y −→ X are functions such that g ◦ f = iX then f is injective.
Suppose f(x1) = f(x2) for some x1, x2 ∈ X. Then g(f(x1) = g(f(x2)), that is,
(g ◦ f)(x1) = (g ◦ f)(x2). But g ◦ f = iX . So, (g ◦ f)(x1) = x1 and (g ◦ f)(x2) = x2.
Hence x1 = x2. So, f is injective.

(ii) If f : X −→ Y and g : Y −→ X are functions such that f ◦g = iY then f is surjective.
Let y ∈ Y. As g : Y −→ X, g(y) ∈ X. Hence g(y) = x for some x ∈ X. We will show
that f(x) = y.
Since g(y) = x, we apply f on both sides. So, f(g(y)) = f(x). That is, (f ◦ g)(y) =
f(x). But f ◦ g = iY . Hence (f ◦ g)(y) = y. Hence y = f(x). Thus y has a pre-image
under f . Hence f is surjective.

(iii) If f : X −→ Y, g : Y −→ X are two functions such that g ◦ f = iX then f is injective
and g is surjective.

(iv) f : N −→ Z \ {0} defined as f(x) = x. Let g : Z \ {0} −→ N defined as g(x) = |x|.
We will show that g ◦ f = iN.
g ◦ f(x) = g(f(x)) = g(x) = |x| = x as x ∈ N, so |x| = x.
Hence by above remark, f is one-one.
Observe that this f is not surjective.

(v) f : R −→ [0,∞) defined as f(x) = x2. Let g : [0,∞) −→ R defined as g(x) =
√
x.

We will show that f ◦ g = i[0,∞).
f ◦ g(x) = f(g(x)) = f(

√
x) = (

√
x)2 = x.

Hence by above remark, f is surjective.
Observe that this f is not injective.

(vi) We will show that g ◦ f = iX need not imply that f ◦ g = iY .
Consider f : N −→ Z \ {0} defined as f(x) = x. Let g : Z \ {0} −→ N defined as
g(x) = |x|. We have shown that g ◦ f = iN. We will show that f ◦ g 6= iZ\{0}.
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(f ◦ g)(−2) = f(g(−2)) = f(| − 2|) = f(2) = 2. So (f ◦ g)(−2) 6= −2. Hence
f ◦ g 6= iZ\{0} This example shows that g ◦ f = iX need not imply that f ◦ g = iY .

(vii) We will show that his example shows that f ◦ g = iY need not imply that g ◦ f = iX .
f : R −→ [0,∞) defined as f(x) = x2. Let g : [0,∞) −→ R defined as g(x) =

√
x.

We have shown that f ◦ g = i[0,∞).

Now, consider (g◦f)(−2) = g(f(−2)) = g(4) =
√

4 = 2 (as
√
x ≥ 0 for all x ∈ [0,∞))

So, (g ◦ f)(−2) 6= −2. Hence g ◦ f = iR.

(12) Inverse function: Let f : X −→ Y be a function. A function g : Y −→ X is called an
inverse function of f if f ◦ g = iY and g ◦ f = iX . If such function g exists then it is
unique and it is denoted by f−1.

(13) Let f : X −→ Y be a function. Then f is bijective if and only if f−1 exists.
If f is bijective, then for y ∈ Y , there is unique x ∈ X such that f(x) = y. Define
g : Y −→ X as g(y) = x where f(x) = y. We will verify that f ◦ g = iY and g ◦ f = iX .

(g ◦ f)(x) = g(f(x))
= g(y)
= x.

Thus g ◦ f = iX .

(f ◦ g)(y) = f(g(y))
= f(x)
= y.

Thus f ◦ g = iY .

Hence the function g defined as above is the inverse function of f , that is, g = f−1.
Conversely, suppose there exists g : Y −→ X such that g ◦ f = iX and f ◦ g = iY .
We will show that f is bijective.

TST f is injective.
From Remark 2.3.1 no. (1),
g ◦ f = iX =⇒ f is injective.

TST f is surjective.
From Remark 2.3.1 no. (2),
f ◦ g = iY =⇒ f is surjective.

Hence f is bijective. For example: Show that f : R \ {5
7} −→ R \ {0}, f(x) =

1

7x− 5
is

bijective and hence find f−1.

To show that f is injective.
Suppose f(x1) = f(x2)

1

7x1 − 5
=

1

7x2 − 5
.

7x1 − 5 = 7x2 − 5
x1 = x2.
Hence f is injective.

To show that f is surjective.
Let y ∈ R \ {0}.
If x ∈ R \ {5

7} such that f(x) = y,

then
1

7x− 5
= y.

=⇒ 1 = y(7x− 5).
That is, 1 = 7xy − 5y.

Hence 1 + 5y = 7xy. As, y 6= 0,
1 + 5y

7y
= x.

So,
1 + 5y

7y
is a pre-image of x.

Hence f is surjective.
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Thus, f is bijective. Hence f−1 exists. It is defined as f−1 : R \ {0} −→ R \ {5
7}, f

−1(y) =
1 + 5y

7y
.

Show that f : R \ {−7
5} −→ R \ {−2

5}, f(x) =
3− 2x

5x+ 7
is bijective and hence find f−1.

To show that f is injective.
Suppose f(x1) = f(x2)
3− 2x1

5x1 + 7
=

3− 2x2

5x2 + 7
.

(3− 2x1)(5x2 + 7) = (3− 2x2)(5x1 + 7)
15x1x2 +21−10x1x2−14x1 = 15x1x2 +21−
10x1x2 − 14x2.
−14x1 = −14x2.
=⇒ x1 = x2. Hence f is injective.

To show that f is surjective.
Let y ∈ R \ {−frac25}.
If x ∈ R \ {−7

5} such that f(x) = y,

then
3− 2x

5x+ 7
= y.

=⇒ 3− 2x = y(5x+ 7).
That is, 3− 2x = 5xy + 7y.
Hence 3− 7y = 5xy + 2x.
=⇒ 3− 7y = x(5y + 2).

As, y 6= −2
5 , 5y + 2 6= 0.

Hence
3− 7y

5y + 2
= x.

So,
3− 7y

5y + 2
is a pre-image of x.

Hence f is surjective.

Thus, f is bijective. Hence f−1 exists. It is defined as f−1 : R \ {−2
5} −→ R \

{−7
5}, f

−1(y) =
3− 7y

5y + 2
.

(14) Let f : X −→ Y be a function and let A be a non-empty subset of X. Then

f(A) = {f(x) : x ∈ A}.

Note: f(A) ⊆ Y for every A ⊆ X.

(15) Let A1, A2 ⊆ X. Then following properties hold.

(i) A1 ⊆ A2 =⇒ f(A1) ⊆ f(A2). Converse not true.

(ii) f(A1 ∪A2) = f(A1) ∪ f(A2).

(iii) f(A1 ∩A2) ⊆ f(A1) ∩ f(A2). The equality holds if and only if f is injective.

(16) Let f : X −→ Y be a function and let B be a non-empty subset of Y . Then

f−1(B) = the set of all pre-images of elements of B = {x ∈ X : f(x) ∈ B}.

Note: (1) Here f−1 indicates only that we are finding the pre-images of the elements of
B. f−1 is not considered as a function. So, we can find f−1(B) irrespective of whether
our function f is bijective or not.
(2) f−1(B) ⊆ X for every B ⊆ Y.

(17) Let B1, B2 ⊆ Y . Then following properties hold.

(i) B1 ⊆ B2 =⇒ f−1(B1) ⊆ f−1(B2). Converse not true.

(ii) f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2).
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(iii) f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

(18) Let f : X −→ Y be a function and let A ⊆ X and B ⊆ Y. Then the following properties
hold.

(i) A ⊆ f−1
(
f(A)

)
. The equality holds if and only if f is injective.

(ii) f
(
f−1(B)

)
⊆ B. The equality holds if and only if f is surjective.

2.3.2 PRACTICAL 2.3

(A) Objective Questions:

Choose correct alternative in each of the following:

(1) Let A and B be two non empty sets. A function from A to B is a

(a) Relation which assigns atleast one element of A to a unique element of B.

(b) Relation which assigns every element of A to a unique element of B.

(c) Relation which assigns each element of A to a more than one element of B.

(d) None of these.

(2) A = {1, 2, 3}, B = {a, b, c, d} then which of the following relations is a function from A to
B.

(a) R = {(1, a), (1, b), (2, c), (3, d), (3, a)}.
(b) R = {(1, a), (2, a), (3, a)}.

(c) R = {(1, a), (2, c)}.
(d) R = {(1, a), (2, b), (3, c), (3, d)}.

(3) Let X = {a, b, c, d, e}, Y = {1, 2, 3}. Which of the following relations is not a function
from X to Y

(a) R = {(a, 1), (b, 2), (c, 3), (d, 1), (e, 2)}
(b) R = {(a, 1), (b, 1), (c, 1), (d, 1), (e, 1)}

(c) R = {(a, 1), (a, 2), (b, 2), (d, 3), (e, 3), (c, 1)}
(d) R = {(a, 3), (b, 3), (c, 2), (d, 1), (e, 1)}

(4) Which of the following is not a function?

(a) f : N −→ N ∪ {0}, f(n) = last digit of n for all n ∈ N.

(b) f : N −→ N, f(n) = sum of digits of n for all n ∈ N.

(c) f : N −→ N ∪ {0}, f(n) = number of digits of n for all n ∈ N.

(d) f : N −→ N ∪ {0}, f(n) = n− 1 for all n ∈ N.

(5) Let X and Y be two non empty sets.
(i) f : X −→ Y is function if every element of X has a unique image in Y.
(ii)f : X −→ Y is function if for x1, x2 ∈ X, x1 = x2 =⇒ f(x1) = f(x2).
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(a) Only (i) is true.

(b) Only (ii) is true.

(c) Both (i) and (ii) are true.

(d) Neither (i) nor (ii) is true.

(6) Let f : X −→ Y be a function.

(i) Range f is a collection of those elements of Y that have atleast one pre-image in X.

(ii) Range f is a collection of images of all the elements of X.

(iii) Range f = {f(x)|x ∈ X}.

(a) Only (i) is true.

(b) Only (ii) is true.

(c) Only (iii) is true.

(d) All of (i), (ii), (iii) are true.

(7) g : R −→ R, g(x) = ex for all x ∈ R then Range g is

(a) R+ (b) R− (c) R+ ∪ {0} (d) R

(8) h : R −→ R, h(x) = sinx+ 3 for all x ∈ R then Range h is

(a) [−1, 1] (b) [2, 4] (c) [−4,−2] (d) [−4, 4]

(9) f : R −→ R, f(x) = sin(xπ) for all x ∈ R then Range f is

(a) [−1, 1] (b) [0, 1] (c) [−1, 0] (d) None of these

(10) Let X, Y be two non empty sets then projection map is given by

(a) f : X −→ X, f(x) = x for all x ∈ X.

(b) f : X −→ X, f(x) = c for all x ∈ X.

(c) f : X × Y −→ X, f(x, y) = x+ y for all (x, y) ∈ X × Y.
(d) f : X × Y −→ Y , f(x, y) = y for all (x, y) ∈ X × Y.

(11) Let X and Y be two non empty sets and f : X −→ Y be a function.
(i) f : X −→ Y is injective if no two elements of X have the same image in Y
(ii)f : X −→ Y is injective if for x1, x2 ∈ X, f(x1) = f(x2) =⇒ x1 = x2.

(a) Only (i) is true

(b) Only (ii) is true

(c) Neither (i) nor (ii)is true

(d) Both (i) and (ii) are true.

(12) Let X and Y be two non-empty sets and f : X −→ Y be a function. Suppose A ⊆ X,B ⊆
Y , then

(a) f(A) ⊆ X, f−1(B) ⊆ X
(b) f(A) ⊆ Y, f−1(B) ⊆ Y

(c) f(A) ⊆ X, f−1(B) ⊆ Y
(d) f(A) ⊆ Y, f−1(B) ⊆ X

(13) Let X and Y be two non empty sets and f : X −→ Y be an onto function. Which is NOT
TRUE?

2.3



74 CHAPTER 2. (USMT 102) ALGEBRA I

(a) Every element of Y has atleast one pre-image in X

(b) {f(x)|x ∈ X} = Y

(c) Range f = Co-domain f

(d) Every element of Y has unique pre-image in X

(14) Let X and Y be two non empty sets.f : X −→ Y be a function. Suppose A ⊆ X,B ⊆ Y .
Consider the following statements.

(i) f(A) is a collection of images of each element of A.

(ii) f(B) is a collection of all pre-images of each element of B.

(iii) f(A) = {f(x) | x ∈ A}.
(iv) f(B) = {x ∈ X | f(x) ∈ B}.

(a) Only (i) and (ii) are true

(b) Only (iii) and (iv) are true

(c) All (i) to (iv) are true

(d) None of (i) to (iv) is true.

(15) f : X −→ Y is a bijective function if and only if

(a) Every element of X has an unique image in Y

(b) No two elements of X have the same image in Y

(c) Every element of Y has atleast one preimage in X

(d) f is invertible.

(16) f : R\{u} −→ R\{ v}, f(x) = ax+b
cx+d for all x ∈ R\{x} is bijective then,

(a) u = −d
c and v = a

c .

(b) u = −d
c and v = a

d .

(c) u = −d
c and v = b

d .

(d) u = −d
c and v = b

c .

(17) f : R\{−3
5 } −→ R\{9

5}, f(x) = 9x+5
5x+3 , then inverse of f is

(a) g : R\{9
5} −→ R\{−3

5 }, g(y) = 5−3y
5y−9 ∀y ∈ R\{9

5}
(b) g : R\{9

5} −→ R\{−3
5 }, g(y) = 3y−5

5y−9 ∀y ∈ R\{9
5}

(c) g : R\{9
5} −→ R\{−3

5 }, g(y) = 5+3y
5y+9 ∀y ∈ R\{9

5}
(d) None of the above

(18) Let X be a non-empty set and f, g, h : X −→ X be functions. Then, which of the following
MAY NOT be true?

(a) g ◦ f(x) = g(f(x)) for all x ∈ X.
(b) f ◦ g(x) = f(g(x)) for all x ∈ X.

(c) f ◦ g = g ◦ f
(d) (f ◦ g) ◦ h = f ◦ (g ◦ h)

(19) Let f : X −→ Y be a bijective function. Then g : Y −→ X is said to be the inverse of f

(a) if and only if f ◦ g = idY

(b) if and only if g ◦ f = idX

(c) if and only if f ◦ g = idY and g ◦ f = idX

(d) None of these

(20) A function f : X −→ Y is invertible if and only if



75

(a) f is injective

(b) f is surjective

(c) f is bijective

(d) None of the above

(21) f : X −→ Y , g : Y −→ Z be two bijective functions. The

(a) (gof)−1 = g−1of−1.

(b) (gof)−1 = f−1og−1.

(c) (gof)−1 = gof−1.

(d) (gof)−1 = fog−1.

(22) Which of the following is NOT TRUE

(a) Inverse of f : R −→ R, f(x) = ex is g : R −→ R, g(x) = log x.

(b) Inverse of f : R −→ R, f(x) = x+ 3 is g : R −→ R, g(x) = x− 3.

(c) Inverse of f : R\{−1} −→ R\{1}, f(x) = x+5
1+x is g : R\{1} −→ R\{−1}, g(x) = 5+x

x−1 .

(d) Inverse of f : [0, 1] −→ [0, 1], f(x) = x2 is g : [0, 1] −→ [0, 1], g(x) =
√
x.

(23) f : X −→ Y , g : Y −→ Z be two functions.

(a) gof is injective =⇒ f, g are injective

(b) gof is surjective =⇒ f, g are both surjective

(c) gof is bijective =⇒ f, g are both bijective

(d) f, g are bijective =⇒ gof is bijective

(24) f : X −→ Y , g : Y −→ Z be two functions.

(a) gof is injective =⇒ g is injective

(b) gof is surjective =⇒ f is surjective

(c) gof is injective and f is surjective =⇒ g is injective

(d) gof is surjective and g is surjective =⇒ f is surjective

(B) Descriptive Questions

(1) Determine whether following relations are functions from X to Y ?
X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5}

(a) R1 = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}
(b) R2 = {(x1, y4), (x2, y5), (x4, y3)}
(c) R3 = {(x1, y2), (x1, y3), (x2, y5), (x3, y2), (x4, y1)}
(d) R4 = {(x1, y3), (x2, y3), (x3, y3), (x4, y3)}

(2) Prove or disprove:

(a) There is an injective function f : X −→ Y where |A| = n, |B| = m and m > n.

(b) There is a surjective function f : X −→ Y where |A| = n, |B| = m and m < n.

(3) Determine whether the following functions are injective or surjective?
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(a) A = {a, b}, B = {1, 2} and f1 = {(a, 1), (b, 1)}
(b) A = {a, b}, B = {1, 2, 3} and f2 = {(a, 3), (b, 1)}
(c) A = {a, b}, B = {1}and f3 = {(a, 1), (b, 1)}
(d) A = {a, b}, B = {1, 2} and f4 = {(a, 2), (b, 1)}

(4) Give an example of a function f such that f is

(a) injective but not surjective.

(b) surjective but not injective.

(c) injective as well as surjective.

(d) neither injective nor surjective.

(5) Determine whether following functions are injective/ surjective

(a) f : N −→ N ∪ {0}, f(n) = last digit of n for all n ∈ N.
(b) f : N −→ N, f(n) = sum of digits of n for all n ∈ N.
(c) f : N −→ N ∪ {0}, f(n) = number of digits of n for all n ∈ N.
(d) f : N −→ N ∪ {0}, f(n) = n− 1 for all n ∈ N.
(e) f : N −→ N ∪ {0}, f(n) = n+ 1 for all n ∈ N.

(f) f : N −→ N ∪ {0}. f(n) =

{
0 if n is even,

1 if n is odd.

(g) f : Z −→ Z, f(k) = 3k for all k ∈ Z.
(h) f : R −→ R, f(x) = x for all x ∈ R.
(i) f : R −→ R, f(x) = x2 for all x ∈ R.
(j) f : R −→ R, f(x) = sinx for all x ∈ R.
(k) f : R −→ R, f(x) = ex for all x ∈ R.
(l) f : R −→ R, f(x) = log x for all x ∈ R.

(m) f : R −→ R, f(x) = |x| for all x ∈ R.

(6) Describe the following functions and write its range.

(a) Identity function.

(b) Inclusion function.

(c) Constant function.

(d) Projection function.

(e) Characteristic function.

(7) Find Range of each of the following function.

(a) f : X −→ Y where X = {Apple, Banana, Grapes, Cherry} and Y = {A, B, · · · ,Z}
and f(Apple) = A, f(Banana) = B, f(Grapes) = G, f(Cherry) = C.

(b) f : R −→ R, f(x) = x2 + 2 for all x ∈ R.
(c) f : R −→ R, f(x) = sin(x− π

2 ) for all x ∈ R.
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(d) f : R −→ R, f(x) = |x+ 2| for all x ∈ R.
(e) f : Z −→ Z, f(k) = 2k for all k ∈ Z.
(f) f : Z −→ Z, f(k) = remainder when k is divided by 7 for all k ∈ Z.
(g) f : {1, 2, · · · , 1000} −→ N, f(n) = sum of digits of n for all n ∈ {1, 2, · · · , 1000}.
(h) f : N −→ N ∪ {0}, f(n) = last digit of n for all n ∈ N.

(i) f : {1, 2, · · · , 1000} −→ N, f(n) = number of digits of n for all n ∈ {1, 2, · · · , 1000}.
(j) f : [−1, 1] −→ R, f(x) =

√
(1− x2) for all x ∈ [−1, 1].

(k) f : R −→ R, f(x) = 3x+ 11 for all ∈ R.
(l) f : R\{2} −→ R, f(x) = 3

2−x for all x ∈ R\{2}.
(m) f : R× R −→ R, f(a, b) = (a+ b, a− b) for all (a, b) ∈ R× R.

(8) For the floor function f find

(a) f([1, 5]) (b) f((−∞, 0]) (c) f({0}) (d) f({0, 1}) (e) f(N)

(9) If f : R −→ R, f(x) = x2 for all x ∈ R, then find

(a) f({−1, 1}) (b) f((−1, 1)) (c) f([0, 1)) (d) f−1([0, 4]) (e) f−1(R)

(10) Let X be a non empty set and A ⊆ X then

(a) Find χ−1
A ({1}) and χ−1

A ({0}) where χA is the characteristic function of X.

(b) For which A ⊆ X, χ−1
A ({1}) = X, χ−1

A ({1}) = ∅.

(11) If f : R −→ R, f(x) = x3 + 3 ∀ x ∈ R and g : R −→ R, g(x) = 2x+ 1 ∀ x ∈ R, find

(a) gof(1) (b) fog(1) (c) fof(0) (d) ((fog)og)(0)

(12) Find fog and gof in each of the following case. Further check whether fog = gof.

(a) f : R −→ R, f(x) = x2 and g : R −→ R, g(x) = 2x+ 1.

(b) f : R −→ R, f(x) = sinx and g : R −→ R, g(x) = bxc.
(c) f : R −→ R, f(x) = ex and g : R −→ R, g(x) = log x.

(d) f : R\{1} −→ R\{0}, f(x) = 1
1−x and g : R −→ R, g(x) = x−1

x .

(13) Prove that following functions are bijective also find inverse function in each case.

(a) f : R −→ R, f(x) = 2x+ 3 ∀ x ∈ R.
(b) f : R −→ R, f(x) = 5x− 8 ∀ x ∈ R.
(c) f : R\{3} −→ R\{0}, f(x) = 1

x−3 ∀ x ∈ R\{3}.

(d) f : R\{1} −→ R\{−1}, f(x) = x+5
1−x ∀ x ∈ R\{1}.

(e) f : R\{3} −→ R\{5}, f(x) = 5x+1
x−3 ∀ x ∈ R\{3}.

(f) f : R\{−1
2 } −→ R\{3

2}, f(x) = 3x+5
2x+1 ∀ x ∈ R\{−1

2 }

(g) f : R\{−3
5 } −→ R\{9

5}, f(x) = 9x+5
5x+3 ∀ x ∈ R\{−3

5 }.

2.4
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(h) f : R −→ R+, f(x) = ex ∀ x ∈ R.
(i) f : C −→ C, f(z) = z̄ ∀ z ∈ C.

(14) f : R\{1} −→ R\{0}, f(x) = 1
x−1 , g : R\{0} −→ R\{0}, f(x) = 1

x . Find (gof)−1.

xxxxxxxxx

2.4 Practical 2.4: Binary Operations, Equivalence Relations,
Partition and Equivalence classes

2.4.1 Prerequisite for Practical 2.4

(1) Binary Operation: Let X be a non-empty set. Any function ∗ from X × X to X is
called a binary operation on X.
Hence if a, b ∈ X and ∗ is a binary operation on X then a ∗ b ∈ X.
Note: Binary operations are denoted by different notations such as ∆, ◦, · · · etc.

(2) Some binary operations are as follows.

(i) Addition is a binary operation on N (also on Z or Q or R) as for any a, b ∈ N (or Z
or Q or R), a+ b ∈ N. (or Z or Q or R)

(ii) Multiplication is also a binary operation on N. (also on Z or Q or R).

(3) Some non-binary operations:

(i) Subtraction is not a binary operation on N as 4, 6 ∈ N but 4− 6 = −2 /∈ N,

(ii) Division is not a binary operation on N as 2, 3 ∈ N but
2

3
/∈ N.

(4) Let X be a non-empty set with a binary operation ∗ on it. Let A be a non-empty subset
of X. Then A is said to be closed under the binary operation ∗, if a, b ∈ A =⇒ a ∗ b ∈ A.

(5) Let X be a non-empty set and ∗ be a binary operation on it.

(i) ∗ is said to be commutative, if a ∗ b = b ∗ a for all a, b ∈ X.

(ii) ∗ is said to be associative, if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ X.
(iii) If there exists an element e in X such that x ∗ e = x = e ∗ x, for all x ∈ X, then, e is

said to be an identity element of X with respect to the binary operation ∗.
(iv) If e is an identity element with respect to the binary operation ∗ and for an element

a ∈ X, there exists an element b ∈ X, such that a ∗ b = e = b ∗ a, then it is called as
an inverse of a with respect to ∗.

(6) Relations:
If X and Y are two non-empty sets then a relation R from X to Y is a subset of
X × Y.(prerequisite for Practical 2.4 number (3), )
If (a, b) ∈ R then we write a R b and read as a is R−related to b or a is related to b under
R.

Remarks 2.4.1
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(i) If X or Y is an empty set then X × Y is also an empty set and any relation defined
on these sets is also empty.

(ii) R can still be ∅ even when X and Y are non-empty.

(iii) We are going to consider X 6= ∅, Y 6= ∅ and R ⊆ X × Y,R 6= ∅.
(iv) If X = Y, that is if R is a relation from X to itself, then we say that R is a relation

on X.

(7) Let X be a non-empty set and let R be a relation on it. Then R is said to be

(i) Reflexive, if a R a, for all a ∈ X.
(ii) Symmetric, if a R b =⇒ b R a, for all a, b ∈ X.

(iii) Transitive, if a R b, b R c =⇒ a R c, for all a, b, c ∈ X.

(8) Equivalence Relation: Let X be a non-empty set and let R be a relation on X. Then
R is said to be an equivalence relation on X if R is reflexive, symmetric and transitive.
An equivalence relation R is denoted by (̃tilda).

(9) Some equivalence relations:

(i) Let X be a non-empty set. Define a relation R on X as aRb if and only if a = b
for all a, b ∈ X. Then we can verify that R is an equivalence relation on X. This
equivalence relation is called as a trivial equivalence relation.

(ii) Define a relation R on Z set of integers as follows: For a, b ∈ Z, a R b if and only if
a+ b is an even integer. We can verify that R is an equivalence relation.

(iii) Let n be a positive integer. Define a relation R on Z such that a R b if and only if
a ≡ b( mod n) for all a, b ∈ Z. Then R is an equivalence relation on Z.

(10) Equivalence Class: Let X be a non-empty set and let R be an equivalence relation on
X. If a ∈ X, then the set {x ∈ X : x R a} is called the equivalence class of a with
respect to the equivalence relation R. The equivalence class of a is denoted by [a] or a.

(11) Partition of a set: Let X be a non-empty set. P = {A1, A2, · · · } is a partition of X if
the following conditions are satisfied.
(1) Each Ai is a non-empty subset of X.
(2) Ai ∩Aj = ∅ for i 6= j and Ai, Aj ∈ P.
(3) ∪Ai∈PAi = X.

(12) Let X be a non-empty set and let R be an equivalence relation on X. Let P be the set of all
equivalence classes of elements of X with respect the relation R. That is, P = {[a] : a ∈ X}
where [a] = {x ∈ X : x R a}. Then P is a partition of X.

(13) Let X be a non-empty set and let P = {A1, A2, · · · } be a partition of X. Define a relation
R on X such that for a, b ∈ X, a R b if and only if a and b belong to the same Ai for some
Ai ∈ P. Then R is an equivalence relation on X.

(14) Let X be a non-empty set. An equivalence relation on X induces a partition on X and
conversely, every partition of X defines an equivalence relation on X.

2.4
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(15) Equivalence Classes modulo n:
Let n be a positive integer. Define a relation R on Z such that a R b if and only if a ≡ b(
mod n). Then R is an equivalence relation on Z. Hence R induces a partition on Z
containing all equivalence classes of all elements of Z with respect to the relation R. This
partition is denoted by Zn.
Hence Zn = {a : a ∈ Z} where a = {x ∈ Z : xRa}. This partition is denoted by Zn and
called as the set of all residue classes modulo n.
Thus Zn = {a : a ∈ Z}.

a = {x ∈ Z : x R a}.
= {x ∈ Z : n | (x− a)}.
= {x ∈ Z : x− a = nk for some k ∈ Z}.
= {x ∈ Z : x = a+ nk for some k ∈ Z}.
= {a+ nk : k ∈ Z}. (1)

By Division Algorithm, a = nq + r, 0 ≤ r < n. We can show that a = r.
Since the remainders can take values only from 0 to n− 1, the only distinct residue classes
modulo n are 0, 1, · · · , n− 1. Hence Zn = {0, 1, · · · , n− 1}.

(16) Z5 = {0, 1, 2, 3, 4}. From (1), we have,

0 = {0 + 5k : k ∈ Z} = {5k : k ∈ Z} = {· · · ,−20,−15,−10,−5, 0, 5, 10, · · · }
1 = {1 + 5k : k ∈ Z} = {· · · ,−19,−14,−9,−4, 1, 6, 11, · · · }
2 = {2 + 5k : k ∈ Z} = {· · · ,−18,−13,−8,−3, 2, 7, 12, · · · }
3 = {3 + 5k : k ∈ Z} = {· · · ,−17,−12,−7,−2, 3, 8, 13, · · · }
4 = {4 + 5k : k ∈ Z} = {· · · ,−16,−11,−6,−1, 4, 9, 14, · · · }

(17) If n is a positive integer and a, b ∈ Z then following statements are true for Zn.

(i) a ∈ a.

(ii) a ≡ b mod n if and only if a = b.

(iii) If a = nq + r, 0 ≤ r < n then a = r.

(18) Binary operations on Zn where n is a positive integer.
Let a, b ∈ Z. Define + and ∗ on Zn as follows:

(i) a+ b = a+ b.

(ii) a ∗ b = a ∗ b.

We will prepare the addition table and multiplication table for Z6.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4
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∗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

2.4.2 PRACRICAL 2.4

(A) Objective Questions:

Choose correct alternative in each of the following:

(1) If ∗ is a binary operation on N then ∗ can be

(a) Addition (b) Subtraction (c) Division (d) None of these

(2) If ∗ is an associative binary operation on Z then ∗ can be

(a) Addition (b) Subtraction (c) Division (d) None of these

(3) Which of the following statement is false?

(a) Addition is a binary operation on N.

(b) Addition is a binary operation on Z.
(c) Addition is a binary operation on R+.

(d) All above statements are false.

(4) Division is a binary operation on

(a) Z (b) Q (c) R (d) R∗ = R\{0}

(5) Subtraction is not a binary operation on

(a) N (b) Z (c) Q (d) R

(6) In which of the following sets, every element has multiplicative inverse?

(a) Z (b) Q (c) R (d) R∗ = R\{0}

(7) Consider the binary operation ∗ on Z as follows. For, a, b ∈ Z, a ∗ b = a+ b− 7. Identity
element of Z under the binary operation ∗ is?

2.4
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(a) 0 (b) 1 (c) 7 (d) -7

(8) Consider the binary operation ∗ on Q∗ = Q\{0} as follows. For, a, b ∈ Q∗, a ∗ b = ab
3 .

Identity element of Q∗ under the binary operation ∗ is?

(a) 0 (b) 1 (c) 3 (d) 1
3

(9) For a, b ∈ R, a ∗ b = |a|b. Then which of the following is NOT TRUE?

(a) ∗ is a binary operation on R.

(b) ∗ is commutative.

(c) ∗ is associative.

(d) All of these.

(10) Which of the following binary operation on Q\{0} is not commutative?

(a) a ∗ b = 4a− 5b.

(b) a ∗ b = a+ b− 5.

(c) a ∗ b = ab
5 .

(d) a ∗ b = a2 + b2.

(11) For a, b ∈ N, a ∗ b = max{a, b}. Then, what is NOT TRUE ?

(a) ∗ is a binary operation on R.

(b) ∗ is commutative.

(c) Identity element of N under the operation ∗ is 1.

(d) Every element of N has inverse element in N under the binary operation ∗.

(12) The set of all integers having multiplicative inverse is

(a) {1}. (b) {−1}. (c) {−1, 0, 1}. (d) {−1, 1}.

(13) For A,B ∈Mn(R), A ∗B = A+B. Then,

(a) ∗ is not a binary operation on Mn(R).

(b) ∗ is a binary operation on Mn(R) but not commutative.

(c) ∗ is a binary operation on Mn(R) and is commutative too.

(d) None of these.

(14) X =

{(
a a
a a

)
| a 6= 0, a ∈ Q

}
. Consider the operation ∗ on X as follows, for A,B ∈

X,A ∗B = AB. Then, which of the following is NOT TRUE?

(a) ∗ is a binary operation on X.

(b) ∗ is a commutative binary operation on X.

(c) X doesn’t have an identity element under the binary operation ∗.
(d) Every matrix in X has an inverse element in under the binary operation ∗.

(15) Let X be a non empty set and S = P(X). The identity element of S under the binary
operation ′∪′(Union) is
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(a) X. (b) ∅. (c) Xc. (d) None of these.

(16) Let X be a non empty set and S = P(X). The element of S having inverse in S under
the binary operation ′∩′ (Intersection) is

(a) X. (b) ∅. (c) Xc. (d) None of these.

(17) Let X be a non empty set and S = {f : X −→ X|f is bijective}. For, f, g ∈ S, f ∗g = f ◦g.
Then, the identity element of under the binary operation ∗ is

(a) f : X −→ X, f(x) = x for all x ∈ X.

(b) f : X −→ X, f(x) = 0 for all x ∈ X.

(c) f : X −→ X, f(x) = 1 for all x ∈ X.

(d) None of these.

(18) Identity element of Z × Z under the operation ∗ defined as for (a, b), (a′, b′) ∈ Z × Z,
(a, b) ∗ (a′, b′) = (aa′, bb′)

(a) (1, 0). (b) (0, 1). (c) (1, 1). (d) (0, 0).

(19) The elements of Z × Z having an inverse in Z × Z under the operation ∗ defined as for
(a, b), (a′, b′) ∈ Z× Z, (a, b) ∗ (a′, b′) = (aa′, bb′) are

(a) {(1, 0)}.
(b) {(1, 1), (−1, 0)}.

(c) {(0,−1), (−1, 1)}.
(d) {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

(20) X = {a, b, c, d}, R = {(a, a), (a, b), (b, d), (c, c), (b, a)}, then

(a) R is reflexive.

(b) R is symmetric.

(c) R is transitive.

(d) None of these.

(21) X = {1, 2, 3, 4}, R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)}, then

(a) R is reflexive.

(b) R is symmetric.

(c) R is transitive.

(d) None of these.

(22) For a, b ∈ N, aRb⇐⇒ a+ b is odd. Then R is

(a) reflexive but not symmetric

(b) Not reflexive but symmetric

(c) Only symmetric

(d) Neither reflexive nor symmetric

(23) For x, y ∈ R, xRy ⇐⇒ there exists c 6= 0, c ∈ R such that y = cx then

(a) R is not an equivalence relation

(b) R is an equivalence relation with two distinct equivalence classes

(c) R is an equivalence relation with exactly one equivalence class

(d) R is an equivalence relation with infinitely many distinct equivalence classes

(24) Number of different relations on a non empty set X containing ‘n’ elements is

2.4
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(a) 2n
2

(b) 2n (c) n2 (d) None of these

(25) Number of different reflexive relations on a non empty set X containing ‘n’ elements is

(a) 2n
2

(b) 2n(n−1) (c) 2n
2(n−1)

(d) 2
n(n−1)

2

(26) Number of different symmetric relations on a non empty set X containing ‘n’ elements is

(a) 2
n2+2n−1

2 (b) 2n
2+2n−1

(c) 2
n2+n−1

2 (d) None of these

(27) Which of the following statements is NOT TRUE

(a) Every equivalence relation induces a partition and vice versa

(b) Two equivalence classes are either equal or disjoint

(c) Intersection of two equivalence relations is again an equivalence relation.

(d) Union of two equivalence relations is again an equivalence relation.

(28) X = {a, b, c}, R = {(a, a), (b, b), (c, c), (a, b), (b, a)}. The partition induced by the equiva-
lence relation R on X is

(a) {{a}, {b}, {c}}
(b) {{a, b}, {c}}

(c) {{a}, {b, c}}
(d) {{a, b, c}}

(29) X = {1, 2, 3}, P = {{1, 3}, {2}}. The equivalence relation induced by the partition P is

(a) {(1, 1), (3, 3), (1, 3), (3, 1), (2, 2)}
(b) {(1, 1), (2, 2), (1, 2), (2, 1), (3, 3)}

(c) {(1, 1), (2, 2), (3, 3)}
(d) None of these

(30) For a, b ∈ Z, aRb⇐⇒ a ≡ b(mod 5). Then the number of distinct equivalence classes are

(a) 0 (b) 4 (c) 6 (d) 5

(31) For a, b ∈ Z, aRb⇐⇒ a ≡ b(mod n) (n is a positive integer). Then R is

(a) Reflexive (b) Symmetric (c) Transitive (d) All the above

(32) In Z62, 31 + 35 is

(a) 4 (b) 14 (c) 20 (d) None of these

(33) In Z14, 35− 39 is

(a) 4 (b) 10 (c) 20 (d) None of these

(34) In Z62, 31 ∗ 35 is
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(a) 31 (b) 14 (c) 25 (d) None of these

(35) In Z14,−35 ∗ 39 is

(a) 4 (b) 7 (c) 27 (d) None of these

(B) Descriptive Questions

(1) Check whether the given operation ∗ is a binary operation on the given set S. If ∗ is a
Binary operation, then find the identity element of S(if it exists). Further, if S has an
identity element under the binary operation ∗, then determine those elements of S that
have an inverse in S.

(i) S = N, for a, b ∈ N, a ∗ b = a+ b.

(ii) S = N, for a, b ∈ N, a ∗ b = max{a, b}.
(iii) S = Z, for a, b ∈ Z, a ∗ b = a− b.
(iv) S = Z, for a, b ∈ Z, a ∗ b = a+ b− 3.

(v) S = Q∗, for a, b ∈ Q∗, a ∗ b = ab
5 .

(vi) S = R \ {1}, for a, b ∈ R \ {1}, a ∗ b = a+ b− ab.
(vii) S = R, for a, b ∈ R, a ∗ b = |a− b|.
(viii) S = Mn(R), for A,B ∈Mn(R), A ∗B = A+B.

(ix) S = Mn(R), for A,B ∈Mn(R), A ∗B = AB.

(x) S =
{( a a

a a

)
|a 6= 0, a ∈ Q

}
, for A,B ∈ S, A ∗B = AB.

(xi) S = Z× Z, for (a, b), (a′, b′) ∈ Z× Z, (a, b) ∗ (a′, b′) = (aa′, bb′).

(2) Let X be a non empty set and S = P(X). Is ∗ a binary operation on S? Find the identity
element of S (if it exists), and invertible elements of S.

(i) For A,B ∈ S,A ∗B = A ∪B.

(ii) For A,B ∈ S,A ∗B = A ∩B.

(iii) For A,B ∈ S,A ∗B = A \B.

(3) Let X be a non empty set and S = {f : X −→ X|f is bijective}. For, f, g ∈ S, f ∗g = f ◦g.
Is ∗ a binary operation on S? Find the identity element of S (if it exists), and invertible
elements of S. Is ∗ associative? Is it commutative?

(4) Determine whether following relation R on set X is reflexive, symmetric and transitive and
hence an equivalence relation. If R is an equivalence relation then find all its equivalence
classes.

(i) X = {1, 2, 3, 4}, R = {(1, 2), (1, 3), (3, 1), (1, 1), (3, 3), (3, 2), (1, 4), (4, 2), (3, 4)}.
(ii) X = {a, b, c, d, e}, R = {(a, a), (a, b), (a, c), (b, a), (b, b), (c, a), (b, c), (c, c), (d, d), (c, b), (e, e)}.

(5) Below is the list of relations among people. For each of the relations, state whether the
relation is reflexive, symmetric or transitive. Let X := The set of all people

2.4
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(i) For x, y ∈ X, xRy ⇐⇒ Age of x and y is same.

(ii) For x, y ∈ X, xRy ⇐⇒ x is taller than y.

(iii) For x, y ∈ X, xRy ⇐⇒ x is a relative of y.

(6) Suppose in a party there are n guests and n identical chairs placed around table and S is the
set of all possible sitting arrangements. Define a relation R as: For A1, A2 ∈ S,A1RA2 ⇐⇒
A2 can be obtained from A1 by each guest moving a fixed number ‘r’ places in a clockwise
direction. Determine whether the relation R defined as above is an equivalence relation or
not?

(7) Let A be the set of all strings that contains English alphabets. Define a relation R as: For
each, a, b ∈ A, aRb ⇐⇒ l(a) = l(b) where l(x) := length of string x. Determine whether
relation R defined as above is a equivalence relation or not?

(8) Check whether following relations are equivalence relations. If Yes, then describe their
distinct equivalence classes.

(i) For a, b ∈ N, aRb⇐⇒ a+ b is odd.

(ii) For a, b ∈ Z, aRb⇐⇒ a− b is odd.

(iii) For a, b ∈ Z, aRb⇐⇒ a ≤ b.
(iv) For x, y ∈ Z, xRy ⇐⇒ x− y is divisible by 4.

(v) For x, y ∈ Z, xRy ⇐⇒ 2x+ y is divisible by 3.

(vi) For x, y ∈ Z, xRy ⇐⇒ 3x+ 7y is divisible by 10.

(vii) X = R× R. For (x1, y1), (x2, y2) ∈ X, (x1, y1)R(x2, y2)⇐⇒ x1 + x2 = y1 + y2.

(viii) X = Z× Z. For (a, b), (c, d) ∈ X, (a, b)R(c, d) =⇒ ad = bc.

(9) X = Set of all Straight lines in plane R2. Check whether following relations are equivalence.
If yes, describe distinct equivalence classes.

(i) For l1, l2 ∈ X, l1Rl2 ⇐⇒ l1 is parallel to l2.

(ii) For l1, l2 ∈ X, l1Rl2 ⇐⇒ l1 is perpendicular to l2.

(iii) For l1, l2 ∈ X, l1Rl2 ⇐⇒ l1 is either parallel or perpendicular to l2.

(10) Let S be a non empty set and X = P(S). Check whether following relations are equiva-
lence. If yes, describe distinct equivalence classes.

(i) For A,B ∈ X, ARB ⇐⇒ A ⊆ B.

(ii) For A,B ∈ X, ARB ⇐⇒ |A| = |B|.

(11) X = Set of all functions from Z to Z. Check whether following relations are equivalence.
If yes, describe the distinct equivalence classes

(i) For f, g ∈ X, fRg ⇐⇒ f(0) = g(0).

(ii) For f, g ∈ X, fRg ⇐⇒ f(0) = g(1) or g(0) = f(1).

(12) How many different relations, reflexive and symmetric can be defined on a set X containing
n elements.



87

(13) Show that if R and S are equivalence on set X then R ∩ S is also an equivalence relation
on X.

(14) Let R be an equivalence relation on X. Let x ∈ X then prove that y ∈ [x]⇐⇒ [x] = [y].

(15) X = {1, 2, 3, · · · , 10}. Find any three partitions of X containing 5 parts.

(16) List down any 5 partitions of X = {a, b, c, d, e}.

(17) X = {1, 2, 3, 4, 5, 6}, R = {(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)}.
Find the partition of X induced by R.

(18) Let relation R be defined on A = {1, 2, 3} as R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}. Find
the partition on A using equivalence classes.

(19) If P = {{a, c, e}, {b, d}} is a partition of the set X = {a, b, c, d, e}. Determine the equiva-
lence relation that induces above partitions.

(20) Let A = {1, 2, 3, 4, 5, 6} and P = {{1}, {3, 6}, {2, 4, 5}}. Write the equivalence relation
that induces the above partition.

(21) Let A = {1, 2, 3, 4} and P = {{1, 2, 3}, {4}} be a partition of A. Find equivalence relation
R on A determined by the partition P.

(22) If A = {a, b, c}. How many relations can be defined on X ? How many of them are
equivalence relations? List all the equivalence relations on X.

(23) For a, b ∈ Z, aRb⇐⇒ a ≡ b(mod 7).Prove that R is an equivalence relation on Z. Further
find all distinct equivalence classes.

(24) Prepare the multiplication table for Z8.

(25) Prepare the addition table for Z9.

xxxxxxxxx

2.5 Practical 2.5: Polynomials (I)

2.5.1 Prerequisite for Practical 2.5

(1) Polynomial: Let F denote Q or R or C. A polynomial over F is an expression in x of the
form c0 + c1x+ · · ·+ cnx

n where n is a nonnegative integer and c0, c1, · · · , cn ∈ F.
c0, c1, · · · , cn are called the coefficients of the above polynomial and x is called the inde-
terminate.
ci is called the coefficient of xi, for i = 0, 1, · · · , n.

(2) If cn 6= 0, the polynomial is said to have degree n, and cn is called the leading coeffi-
cient.

(3) A polynomial whose leading coefficient is 1 is said to be monic polynomial.

2.5
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(4) Two polynomials a0 + a1x+ · · ·+ anx
n and b0 + b1x+ · · ·+ bmx

m are said to be equal if
n = m and the corresponding coefficients are equal, that is, a0 = b0, a1 = b1, · · · , an = bm.

(5) cnx
n + · · · + c1x + c0 is the zero polynomial if and only if c0 = c1 = · · · = cn = 0. The

degree of the zero polynomial is not defined.

(6) If p(x) is a nonzero polynomial, then its degree is denoted by deg p(x).

(7) Polynomials of degrees 1, 2 and 3 are called as linear, quadratic, and cubic polynomials,
respectively.

(8) Polynomials of degree zero as well as the zero polynomial are called constant polynomial.

(9) The set of all polynomials in x with coefficients in F is denoted by F [x] where (F = Q or
R or C.)
Hence, The set of all polynomials in x with coefficients in Q is denoted by Q[x]. Similarly,
The set of all polynomials in x with coefficients in R is denoted by R[x]. And The set of
all polynomials in x with coefficients in C is denoted by C[x].

(10) Algebra of Polynomials:

(A) Addition
If f(x), g(x) ∈ F [x], f(x) = a0 + a1x+ · · ·+ anx

n and g(x) = b0 + b1x+ · · ·+ bmx
m,

then f(x) + g(x) is given by

f(x) + g(x) =(a0 + b0) + (a1 + b1)x · · ·+ (an + bn)xn if n = m,

(a0 + b0) + (a1 + b1)x · · ·+ (an + bn)xn + bn+1x
n+1 + · · ·+ bmx

m if n < m,

(a0 + b0) + (a1 + b1)x · · ·+ (am + bm)xn + am+1x
m+1 + · · ·+ anx

n if n > m.

Let f(x), g(x), h(x) ∈ F [x]. Then following properties hold.

(i) Addition is a binary operation in F [x]. That is, f(x) + g(x) ∈ F [x].

(ii) Addition is associative: (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)).

(iii) Addition is commutative: (f(x) + g(x)) = g(x) + f(x).

(iv) The zero polynomial is the identity element.

(v) For f(x) = a0 +a1x+ · · ·+anx
n, define (−f)(x) = −a0−a1x−· · ·−anxn. Then

−f ∈ F (x) and f(x) + (−f(x)) = 0.
So, −f(x) is the inverse of f(x) in F [x].

(vi) If f(x), g(x) ∈ F [x] and f(x)+g(x) 6= 0, then deg(f(x)+g(x)) ≤ max{deg f(x),deg g(x)}.

(B) Multiplication: If f(x), g(x) ∈ F [x], f(x) = a0 + a1x + · · · + anx
n and g(x) =

b0 + b1x+ · · ·+ bmx
m, then f(x) · g(x) is given by

f(x) · g(x) = a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + · · ·+ anbmx
n+m.

=

n+m∑
i=1

( ∑
r+s=i

arbs

)
xi.
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If we denote ci =
∑
r+s=i

arbs, for all i, 0 ≤ i ≤ n+m, then

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

ci = a0bi + a1bi−1 + a2bi−2 + · · ·+ aib0

Let f(x), g(x), h(x) ∈ F [x]. Then following properties hold.

(i) Multiplication is a binary operation in F [x]. That is, f(x) · g(x) ∈ F [x].

(ii) Multiplication is associative: (f(x) · g(x)) ◦ h(x) = f(x) · (g(x) · h(x)).

(iii) Multiplication is commutative: (f(x) · g(x)) = g(x) · f(x).

(iv) The polynomial defined as i(x) = 1 is the identity polynomial with respect to
multiplication.

(v) The multiplicative inverse of any polynomial with degree greater than or equal
to 1 does not exist in F [x].

(vi) If f(x), g(x) ∈ F [x] and f(x)·g(x) 6= 0, then deg(f(x)·g(x)) = deg f(x)+deg g(x).

(vii) If f(x), g(x) ∈ F [x] and f(x) 6= 0, g(x) 6= 0 then f(x) · g(x) 6= 0. ( Let f(x) =
a0 +a1x+ · · ·+anx

n and g(x) = b0 + b1x+ · · ·+ bmx
m where an 6= 0 and bm 6= 0.

As an, bm ∈ F and an 6= 0, bm 6= 0, we have anbm 6= 0. Now, anbm is the leading
coefficient of f(x) · g(x). Hence f(x) · g(x) 6= 0.)

(11) Multiplication is distributive over addition in F [x]. That is, f(x) · (g(x) + h(x)) = f(x) ·
g(x) + f(x) · h(x)

(12) The cancellation laws hold in F [x]. That is, if f(x) 6= 0 and f(x) · g(x) = f(x) · h(x) then
g(x) = h(x).

(13) Division Algorithm in F [x]: Let f(x) and g(x) be two polynomials in F [x] with g(x) 6=
0. Then there exist unique polynomials q(x) and r(x) in F [x] such that f(x) = g(x) ·q(x)+
r(x) and either r(x) = 0 or deg r(x) < deg g(x).

(14) Divisibility in F [x]: Let f(x) and g(x) be two polynomials in F [x] with g(x) 6= 0. We
say that g(x) divides f(x) in F [x] and write g(x) | f(x) if there exists h(x) in F [x] such
that f(x) = g(x)h(x). In this case, we also call g(x) a factor of f(x).

(15) Let f(x), g(x) be nonzero polynomials in F [x]. If f(x) | g(x) and g(x) | f(x) then f(x) =
k · g(x) for some k ∈ F.
Since f(x)|g(x) there exists h(x) ∈ F [x] such that g(x) = f(x)h(x) (I).
Since g(x)|f(x) there exists q(x) ∈ F [x] such that f(x) = g(x)q(x) (II).
Putting (I) in (II), we get,

f(x) = g(x)q(x)

= f(x)h(x)q(x)

f(x)(1− h(x)q(x)) = 0

By cancellation law in F (x) (as given in statement no. (12) above) , 1− h(x)q(x) = 0 (as
f(x) 6= 0).

2.5
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Hence h(x)q(x) = 1. This implies deg h(x)+deg q(x) = deg 1. That is, deg h(x)+deg q(x) =
0.
But deg h(x) ≥ 0,deg q(x) ≥ 0. Hence, deg h(x) = 0 and deg q(x) = 0.
Therefore h(x) and q(x) are nonzero constant polynomials.
Let q(x) = k for some k ∈ F.
Hence f(x) = kg(x) for some k ∈ F.

(16) Remainder Theorem: Let f(x) ∈ F [x] and a ∈ F . If f(x) is divided by (x − a) then
the remainder is f(a).

(17) Factor Theorem: Let f(x) ∈ F [x] and a ∈ F . Then f(x) is divisible by (x − a) if and
only if f(a) = 0.

(18) A polynomial of degree n over F has at most n zeros, counting multiplicity.

(19) Greatest Common Divisior in F [x]: Let f(x), g(x) ∈ F [x]. A polynomial d(x) ∈ F [x] is
said to be a greatest common divisor (gcd) of f(x) and g(x) if the following conditions
are satisfied.

(1) d(x) | f(x) and d(x) | g(x).

(2) If h(x) ∈ F [x] is such that h(x) | f(x) and h(x) | g(x) then h(x) | d(x).

Note: If d(x) and d′(x) are two gcds of f(x) and g(x) then d(x) | d′(x) and d′(x) | d(x).
Hence d(x) = kd′(x) for some k ∈ F (from statement no (15) above). So, if we want the
unique gcd then we find the monic gcd.

For example, (1) if gcd(f(x), g(x)) = 2x2 + 3 then x2 +
3

2
is also a gcd and it is monic.

(2) If gcd(f(x), g(x)) = k, k 6= 0 then gcd(f(x), g(x)) = 1 as 1 | k and k | 1 (1 = k ∗ 1

k
=⇒

k | 1).

(20) Euclidean Algorithm: Two non-zero polynomials f(x) and g(x) in F [x] have a greatest
common divisor in F [x].

(A) Objective Questions

Choose correct alternative in each of the following:

(1) Monic polynomial is one whose.............

(a) degree is one.

(b) leading coefficient is one.

(c) constant term is one.

(d) all the coefficients are one.

(2) Degree of a non-zero constant polynomial is .............

(a) 1 (b) 0 (c) 2 (d) Not defined.

(3) If f(x) and g(x) are two polynomials over R with degree m and n respectively and m > n
then deg(f(x) + g(x)) = .....................
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(a) m+ n. (b) m ∗ n. (c) m. (d) n.

(4) If f(x) and g(x) are two nonzero polynomials over R with degree k and l respectively then
deg(f(x) · g(x)) = .....................

(a) k + l. (b) k ∗ l. (c) k. (d) l.

(5) If f(x) and g(x) are any two polynomials with deg(f(x)) = 6 and deg(g(x)) = 5 then
deg(f(x)− g(x)) =

(a) 6. (b) 11. (c) 5. (d) −6.

(6) If f(x) = x4 + 2x2 − 5x+ 1 and deg(f(x) + g(x)) = 7 then deg(g(x)) is

(a) 4 (b) 7 (c) 3 (d) 2

(7) What is the quotient when the polynomial x3−7x2−9x+ 63 is divided by the polynomial
(x+ 3)?

(a) x2 − 10x+ 21

(b) x2 − 10x− 21

(c) x2 + 10x− 21

(d) x2 + 10x+ 21

(8) If f(x) is divided by (x− 97) then remainder is

(a) 0 (b) 97 (c) 1 (d) f(97)

(9) What is the quotient when x4 − 3x2 + 4x+ 8 is divided by x2 + 2?

(a) x2 − 1

2
(b) x2 − 5 (c) x2 − 2

3
(d) x2 + 7.

(10) Which one of the following polynomials has (x+ 1) as a factor ?

(a) x3− 4x2 +x+ 6 (b) x3 + 4x2 +x+ 6 (c) x3− 4x2 +x+ 5 (d) None of these.

(11) ————– is not a factor of the polynomial x3 − 3x2 − x+ 3.

(a) (x− 3) (b) (x− 1) (c) (x+ 1) (d) (x+ 3)

(12) If f(x) = x2 + 1 and g(x) = x4 − 1 then G.C.D of f(x) and g(x) is

(a) x2 − 1

(b) x2 + 1

(c) x− 1

(d) x+ 1

(B) Descriptive Questions

(1) Find quotient and the remainder when f(x) is divided by g(x)

2.5
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(i) f(x) = x4 − 6x3 + 7x2 + 2x+ 1 and g(x) = x+ 3.

(ii) f(x) = x5 + 2x4 − 3x2 + 4x+ 2 and g(x) = x2 + 2.

(iii) f(x) = x4 + 6x3 − 5x2 + 4x− 1 and g(x) = x+ 3.

(iv) f(x) = x5 − 3x4 − 2x2 + 4x+ 2 and g(x) = x2 + 2x+ 2

(v) f(x) = x5 + 4x4 + 2x3 + 3x+ 2 and g(x) = x2 + x+ 2.

(vi) f(x) = x4 − 3x3 + x2 − 2x+ 1 and g(x) = x2 + x− 1.

(vii) f(x) = x5 − 2x4 + 3x3 − 2x2 + x+ 1 and g(x) = x2 + 2x+ 1.

(viii) f(x) = x4 − x3 + 2x2 + x− 6 and g(x) = x2 + x+ 1.

(ix) f(x) = x5 + 3x4 + x2 + 2x+ 2 and g(x) = x2 + 2x+ 1.

(x) f(x) = x5 + 4x4 − 3x2 − 4x+ 1 and g(x) = x3 + x+ 1.

(2) Find G.C.D. of f(x) and g(x) in R[x].
f(x) g(x)

(i) 2x3 − 13x2 + 17x− 3 2x3 + 5x2 − 14x+ 3
(ii) x4 − x2 + x+ 1 x5 + x4 − x3 − x2 + x+ 1
(iii) x2 − 2x x4 − 4x2

(iv) x8 − 1 x6 − 1
(v) x4 − 7x3 + 18x2 − 20x+ 8 x2 − 3x+ 2
(vi) x4 − 4x3 + 3x2 + 4x− 4 x3 − 3x2 − x+ 3
(vii) x4 − 8x3 + 22x2 − 24x+ 9 x3 − 3x+ 2
(viii) x4 − 5x3 + 9x2 − 7x+ 2 x3 − 2x2 − x+ 2.
(ix) 4x3 − 9x2 + 14x− 3 4x4 − x3 − 4x2 + 5x+ 1.
(x)f x8 − 1 x12 − 1.
(xi) x6 + x3 − 2 x6 − 1.

xxxxxxxxxxxx

2.6 Practical 2.6: Polynomials (II)

2.6.1 Prerequisite of Practical 2.6

(1) Let f(x) ∈ F [x] and a ∈ F . If f(a) = 0 then a is called as a zero of f(x) ( or a root of
f(x) ) if f(a) = 0.

(2) Let f(x) ∈ F [x] and a ∈ F . From Factor Theorem, (prerequisite of practical 2.5 no. (17)),
a is a zero of f(x) if and only if (x− a) is a factor of f(x).

(3) Let f(x) ∈ F [x] and a ∈ F . If (x− a)n divides f(x) but (x− a)n+1 does not divide f(x)
for some n ∈ N, then n is called the multiplicity of the root a.

(4) A polynomial of degree n over F has at most n zeros, counting multiplicity.
( Let f(x) ∈ F [x], f(x) 6= 0. Proof is by induction on n. If deg(f(x)) = 0, then f(x) is a
non-zero constant polynomial in the form f(x) = c, c 6= 0. Then f(x) has no zero. Number

of zeros is 0. If deg f(x) is 1, then f(x) = a0 + a1x, where a1 6= 0. But then
−a0

a1
is the

only zero. Hence f(x) has exactly one zero. Assume the theorem for polynomials of degree
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< n. Now, consider f(x) ∈ F [x] with deg f(x) = n, n ≥ 2.
If f(x) has no zeros, then number of zeros = 0 < n and hence the statement is true.
Suppose f(x) has a zero, say a. Let k be the multiplicity of a. So k ≥ 1 and we can write
f(x) = (x− a)kq(x) where (x− a) is not a factor of q(x).
f(x) = (x− a)kq(x) =⇒ deg f(x) = deg(x− a)k + deg q(x) = k + deg q(x).
As, deg q(x) ≥ 0, k ≤ n.
If f(x) has no zeros other than a then we are done as we have, no. of zeros of f(x) = k ≤ n.
On the other hand if b 6= a and b is a zero of f(x), then 0 = f(b) = (x− a)kq(b).
Hence b is also a zero of q(x) with the same multiplicity as it has for f(x).
As deg q(x) < n, by the Second Principle of Mathematical Induction, we know that q(x)
has at most deg q(x) = n− k zeros, counting multiplicity.
Hence f(x) has at most k + (n− k) = n zeros, counting multiplicity.)

(5) Let f(x) = a0 + a1x + · · · + anx
n be a polynomial in R[x]. Let α ∈ C, be a root of f(x),

then conjugate of α is also a root of f(x).

(6) Let f(x) = a0 + a1x+ · · ·+ anx
n be a polynomial such that a0, a1, · · · , an ∈ Z.

If
a

b
∈ Q, is such that, gcd(a, b) = 1 and

a

b
is a root of f(x) then a | a0 and b | an.

(Since
a

b
is a root of f(x), we have, a0 + a1

(a
b

)
+ +a2

(a
b

)2
+ · · ·+ an

(a
b

)n
= 0.

a0b
n + a1ab

n−1 + a2a
2bn−2 + · · ·+ ana

n = 0.

a0b
n + a1ab

n−1 + a2a
2bn−2 + · · ·+ an−1a

n−1b = −anan.
−a0b

n + a1ab
n−1 − a2a

2bn−2 + · · · − an−1a
n−1b = ana

n.

b
(
− a0b

n−1 − a1ab
n−2 + a2a

2bn−3 − · · · − an−1a
n−1
)

= ana
n.

Hence b |anan. Since gcd(b, a) = 1, gcd(b, an) = 1. Hence b |anan =⇒ b |an. Similarly,

a0b
n + a1ab

n−1 + a2a
2bn−2 + · · ·+ ana

n = 0.

a0b
n = −a1ab

n−1 − a2a
2bn−2 − · · ·+ an−1a

n−1b− anan.

a0b
n = a

(
− a1b

n−1 − a2ab
n−2 + · · · − an−1a

n−2b− anan−1
)
.

Hence a |a0b
n. Since gcd(a, b) = 1, gcd(a, bn) = 1. Hence a |a0b

n =⇒ a |a0.)

(7) Let f(x) = a0 + a1x + · · · + xn be a monic polynomial such that a0, a1, · · · , an−1 ∈ Z. If
a

b
∈ Q is a root of f(x) then b = ±1.

(8) We can show that if p is a prime then
√
p is an irrational number, using the polynomial

f(x) = x2 − p.

(9) Relation between the zeros and coefficients of a polynomial f(x) ∈ F [x].

(i) Let f(x) ∈ F [x] be a non-zero polynomial of degree n.. Let f(x) = a0 + a1x+ · · ·+
anx

n, an 6= 0. And let r1, r2, · · · , rn be the roots of f(x).

2.6
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sum of the roots taken one at a time = r1 + r2 + · · ·+ rn =
−an−1

an
sum of the roots taken two at a time = r1r2 + r1r3 + · · ·+ r1rn + r2r3 + · · · =

an−2

an

sum of the roots taken three at a time = r1r2r3 + r1r2r4 + · · · =
−an−3

an
and so on .... ....

(ii) If a polynomial is quadratic, f(x) = ax2 + bx + c, and r1 and r2 are the roots of

ax2 + bx+ c then r1 + r2 =
−b
a

and r1r2 =
c

a
.

(iii) If a polynomial is cubic, f(x) = ax3 + bx2 + cx+ d, and r1, r2 and r3 are the roots of

ax3 + bx2 + cx+ d then r1 + r2 + r3 =
−b
a

and r1r2 + r1r3 + r2r3 =
c

a
, r1r2r3 =

−d
a

.

(iv) The quadratic polynomial with roots r1, r2 is given by f(x) = x2 − (r1 + r2)x+ r1r2.

(v) The cubic polynomial with roots r1, r2, r3 is given by f(x) = x3 − (r1 + r2 + r3)x2 +
(r1r2 + r1r3 + r2r3)x− r1r2r3.

(10) Irreducible Polynomial: A non-constant polynomial f(x) ∈ F [x] is said to be irre-
ducible over F if, whenever f(x) is expressed as a product f(x) = g(x) · h(x), with
g(x), h(x) ∈ F [x], then g(x) or h(x) is a constant polynomial in F [x].
Note:

(i) A nonconstant polynomial f(x) ∈ F [x] is said to be irreducible if g(x) ∈ F [x] and
g(x)|f(x) then either g(x) = k or g(x) = kf(x) for some nonzero k ∈ F.

(ii) A nonconstant polynomial f(x) ∈ F [x] is said to be irreducible if f(x) can not be
expressed as a product of two polynomials of lower degree.

A nonzero, nonconstant polynomial of F [x] that is not irreducible over F is called
reducible over F.

(i) The polynomial f(x) = 2x2 + 4 ∈ Q[x]. f(x) is irreducible over Q.
(ii) The polynomial f(x) = 2x2 + 4 ∈ R[x]. f(x) is irreducible over R.
(iii) The polynomial f(x) = 2x2 + 4 ∈ C[x]. f(x) = 2(x +

√
2 i)(x −

√
2 i) is reducible

over C.
(iv) The polynomial f(x) = x2 − 2 ∈ Q[x] is irreducible over Q.
(v) The polynomial f(x) = x2 − 2 ∈ R[x]. We can write f(x) = (x −

√
2)(x +

√
2) and

hence f(x) is reducible over R.

(11) Let p(x), a(x) ∈ F [x]. If p(x) is irreducible over F and p(x) 6 |a(x), then gcd(p(x), a(x)) = 1.
( Suppose gcd(p(x), a(x)) = d(x). Therefore, d(x)|p(x) and d(x)|a(x).

d(x)|p(x) =⇒] d(x) = k or d(x) = kp(x) for some nonzero k ∈ F. (from the definition of
irreducible polynomial no (i)).

If d(x) = kp(x), then d(x)|a(x) =⇒ kp(x)|a(x) =⇒ p(x)|a(x). This is a contradiction.

Hence d(x) = k for some nonzero k ∈ F.
Therefore, gcd(p(x), a(x)) = k.
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Hence gcd(p(x), a(x)) = 1. (as 1 | k and 1 = k ∗ 1
k =⇒ k | 1)

(12) Let p(x), a(x), b(x) ∈ F [x]. If p(x) is irreducible over F and p(x) | a(x)b(x), then p(x) | a(x)
or p(x) | b(x).
( If p(x) | a(x) then we are through. Suppose p(x) 6 |a(x). Then p(x) irreducible =⇒
gcd(p(x), a(x)) = 1.
Therefore, there exist m(x), n(x) ∈ F [x] such that p(x)m(x) + a(x)n(x) = 1. Multiplying
both sides by b(x), we get, p(x)m(x)b(x) + a(x)n(x)b(x) = b(x).
Since p(x) | a(x)b(x) and p(x) | p(x), we have, p(x) | (p(x)m(x)b(x) +a(x)n(x)b(x)). This
implies p(x) | b(x).

(13) Unique Factorization Theorem: Let f(x) ∈ F [x], be such that deg f(x) ≥ 1. Then
f(x) can be expressed as k times, a product of irreducible monic polynomials in F [x] for
some k ∈ F. Further, this representation is unique except for the order in which the factors
occur.
( Proof is by induction on deg f(x).
Let the statement be: Every polynomial in F [x] with degree n, n ≥ 1, can be expressed as
k times, a product of irreducible monic polynomials in F [x] for some k ∈ F. (∗)

If n = 1, f(x) = a0 + a1x, a1 6= 0. Then we can write f(x) = a1

(
a0

a1
+ x

)
.

Here, we have expressed f(x) as k times, a product of irreducible monic polynomials where

k = a1 and one monic, irreducible polynomial is
a0

a1
+ x.

We assume the statement for all polynomials with degree < n.
Let f(x) ∈ F [x] be such that deg f(x) = n, f(x) = a0 + a1x+ · · ·+ anx

n, an 6= 0.

If f(x) is irreducible, then we will write f(x) = anf1(x), where f1(x) is monic and
irreducible.

If f(x) is not irreducible, then we can write f1(x) = g(x)h(x), where g(x), h(x) ∈ F [x]
and deg g(x) < deg f(x), deg h(x) < deg f(x) (from the definition of irreducible poly-
nomial no. (ii)).
So, 1 ≤ deg g(x) < deg f(x) and 1 ≤ deg h(x) < deg f(x).
By Induction, g(x) can be expressed as k1 times, a product of monic irreducible poly-
nomials for some k1 ∈ F and h(x) also can be expressed as k2 times a product of
monic irreducible polynomials for some k2 ∈ F.
Clearly, then, f(x) is expressed as k1 · k2 times a product of monic irreducible poly-
nomials.

Therefore the statement (∗) is true for all n ∈ N.
Now, we will prove that this representation is unique except for the order in which the
factors occur.
Suppose f(x) = αp1(x)p2(x) · · · pr(x) = βq1(x)q2(x) · · · qs(x) where α, β ∈ F and p!(x), p2(x), · · · , pr(x), q1(x), · · · qs(x) ∈
F [x] are monic irreducible polynomials in F [x].
Since p1(x), · · · , pr(x) are monic, the leading coefficient of L.H.S. is α.
Since q1(x), · · · , qs(x) are monic, the leading coefficient of R.H.S. is β.
Therefore α = β.
Hence p1(x)p2(x) · · · pr(x) = q1(x)q2(x) · · · qs(x). (∗)
Therefore p1(x) | q1(x)q2(x) · · · qs(x).
Since p1(x) is irreducible, p1(x) | q1(x)q2(x) · · · qs(x) =⇒ p1(x) |q1(x) or p1(x) |q2(x) · · ·
or p1(x) | qs(x).(by statement no. (12) in the above prerequisite)

2.6
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That is, p1(x) | qi(x) for some i, 1 ≤ i ≤ s.
By renumbering, we may assume i = 1, that is, p1(x) | q1(x).
Now, q1(x) is irreducible implies p1(x) = k or p1(x) = kq1(x) for some k ∈ F. (from defi-
nition of irreducible polynomial no. (i))
As p1(x) is irreducible, p1(x) 6= k. (irreducible polynomials are non-constants)
Therefore p1(x) = kq1(x) for some k ∈ F.
But p1(x) and q1(x) are monic. This implies k = 1.
Hence p1(x) = q1(x).
Thus, p1(x)p2(x) · · · pr(x) = p1(x)q2(x) · · · qs(x).
By Cancellation law, (by prerequisite of practical 2.5, statement no. (12)) p2(x) · · · pr(x) =
q2(x) · · · qs(x).
Now, we repeat the argument above with p2(x) in place of p1(x).
If r < s, then after r such steps we will have 1 on the left and a non-constant polynomial
on the right.
This is a contradiction.
If r > s, then after r such steps we will have 1 on the right and a non-constant polynomial
on the left.
This is a contradiction.
So, r = s and pi(x) = qi(x) for all i, 1 ≤ i ≤ r after suitable renumbering of q(x)′s.
Thus we have proved the required uniqueness.)

2.6.2 PRACTICAL 2.6

(A) Objective Questions

Choose correct alternative in each of the following:

(1) A quadratic polynomial whose roots are -5 and 7 is

(a) x2 − 2x− 35

(b) x2 − 2x+ 35

(c) x2 + 2x+ 35

(d) x2 + 2x− 35

(2) A polynomial whose roots are −2, 3 and 7 is

(a) x3 − 8x2 + x+ 42

(b) x3 − 8x2 + x− 42

(c) x3 + 8x2 + x+ 42

(d) x3 − 8x2 − x− 42

(3) If one of the roots of the quadratic polynomial (k− 1)x2 + kx+ 2 is 5, then the value of k
is

(a)
−23

30
(b)

23

30
(c)
−23

25
(d) −5

(4) For a cubic polynomial ax3 + bx2 + cx+ d with roots r1, r2, r3 we have
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(a) r1r2 + r2r3 + r1r3 =
c

a

(b) r1 + r2 + r3 =
b

a

(c) r1r2r3 =
d

a

(d) r1r2 + r2r3 + r1r3 = − c
a

(5) If r1, r2, r3 are roots of polynomial 7x3 + 21x2 − 4x+ 6 then .....................

(a) r1r2 + r2r3 + r1r3 =
4

7
(b) r1r2r3 = 6

(c) r1 + r2 + r3 = 3

(d) r1 + r2 + r3 = −3

(6) If r1, r2, r3 are roots of polynomial 8x3 − 18x2 + 3x− 4 then .....................

(a) r1r2r3 = −3

8

(b) r1r2r3 = −1

8

(c) r1r2r3 =
18

8

(d) r1r2r3 =
1

2

(7) Which is the root of the polynomial 6x3 − 49x2 + 51x− 14.

(a) −1

2
(b)

2

3
(c) −2

3
(d) −7.

(8) The sum of the roots of the polynomial whose roots are twice the roots of the polynomial
x2 + 17x+ 11 is

(a) 17 (b) 11 (c) 34. (d) −34

(9) If −3 + 4i is a root of the polynomial f(x) of degree 2 then ———— is also a root of f(x).

(a) −3− 4i (b) 3− 4i (c) 3 + 4i (d) 3

(10) The sum of all n, nth roots of unity, for n ∈ N ............

(a) n (b) −n (c) 0 (d) n− 1

(11) The roots of the polynomial x3 − 5x2 − 16x+ 80 are

(a) −4, 4,−5 (b) 4, 4, 5 (c) −4, 4, 5 (d) 4, 4,−5

(12) ————– is not a root of polynomial x3 − 3x2 − x+ 3.

(a) −3 (b) 3 (c) 1 (d) −1

(B) Descriptive questions

(1) Find the multiplicity of each root of polynomial f(x)

2.6
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(i) x4 − 6x2 − 8x− 3

(ii) x4 − 5x3 + 9x2 − 7x+ 2.

(iii) x4 + 2x3 − 3x2 − 4x+ 4.

(iv) x4 − 3x3 + x2 + 3x− 2.

(v) x4 − 7x3 + 18x2 − 20x+ 8

(vi) x4 − 12x3 + 34x2 + 12x− 35

(vii) x4 − 12x3 + 46x2 − 60x+ 25

(viii) x4 − 14x3 + 61x2 − 84x+ 36

(ix) x4 − 11x3 + 29x2 + 11x− 30

(x) x4 − 4x3 + 3x2 + 4x− 4

(xi) x4 − x3 − 3x2 + 5x− 2

(2) Find all roots of f(x) if sum of its two roots is zero.

(i) x3 − 2x2 − 4x+ 8

(ii) x3 − 2x2 − 16x+ 32

(iii) x3 − 2x2 − 25x+ 50

(iv) x3 − 5x2 − 4x+ 20

(v) x3 − 3x2 − 4x+ 12

(vi) x3 − 2x2 − 9x+ 18

(vii) x3 − 2x2 − 4x+ 8

(viii) x3 − 2x2 − x+ 2

(3) If r1, r2 and r3 are roots of f(x) find k, if r1 + r2 = r3 and factorize f(x).

(i) x3 − 4x2 − 4x+ k

(ii) x3 + 12x2 + 44x+ k

(iii) x3 + 6x2 + 11x+ k

(iv) x3 − 14x2 + 55x+ k

(v) x3− 10x2 + 29x+ k

(vi) x3 − 2x2 − 5x+ k

(vii) x3 − 4x2 + x+ k

(viii) x3 + 2x2 − x− k
(ix) x3 − 6x2 + 5x+ k

(x) x3 + 2x2 − 5x− k

(4) In each of the following examples r1, r2 are two roots of the given polynomial f(x) satisfying
certain condition. Find k and factorize f(x).

(i) f(x) = x3 − x2 − 4x+ k, such that r1 + r2 = 0.

(ii) f(x) = 2x3 + 3x2 + kx− 1, such that r1 + r2 = 2.

(iii) f(x) = x3 − 7x+ k, such that r1 + r2 = −1.

(iv) f(x) = x3 − 2x2 − 16x+ k such that r1 + r2 = 0.

(5) Find all roots of f(x) if sum of its two roots is the third root.

(i) x3 − 8x2 + 20x− 16

(ii) x3 + 6x2 − x− 30

(iii) x3 − 4x2 − 20x+ 48

(iv) x3 − 10x2 + 31x− 30

(v) x3 − 12x2 + 44x− 48

(vi) x3 + 4x2 − 4x+ 16

(vii) x3 + 12x2 + 45x+ 54

(6) Determine whether following polynomial f(x) has a rational root.

(i) x4 + x3 + x2 + x+ 1

(ii) x4 − 5x2 + 4

(iii) 5x3 − 15x2 + 7x− 21

(iv) x3 − 4x+ 2

(7) If r1, r2 and r3 are roots of polynomial f(x) = x3−3x2+4x−2, without actually calculating
the values of r1, r2 and r3 write the polynomial with roots 4r1, 4r2 and 4r3.
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(8) If r1, r2 and r3 are roots of polynomial f(x) = x3+7x2+4x−3, without actually calculating
the values of r1, r2 and r3 write the polynomial with roots 5r1, 5r2 and 5r3.

(9) If r1, r2 and r3 are roots of polynomial f(x) = x3 +x2 +2x−1, without actually calculating
the values of r1, r2 and r3 write the polynomial with roots 2r1, 2r2 and 2r3.

xxxxxxxxxxxx

2.7 Practical 1.7: Miscellaneous theory questions

2.7.1 Miscellaneous theory questions from unit I

Unit I

(1) Prove that ‘1’ is the least element of N.

(2) Statements of well-ordering property of non-negative integers.

(3) State and prove the division algorithm.

Or

Given integers a, b (b > 0), prove that there exist unique integers q, r satisfying,

a = bq + r, 0 ≤ r < b.

(4) Define divisibility in integers. Define GCD and LCM of two nonnegative integers. Define
relatively prime integers.

(5) Prove that every non-zero integer which is 6= ±1 has at least one prime divisor.

(6) Prove that if a, b ∈ Z and atleast one of a, b is non-zero, then there exists x, y ∈ Z such
that (a, b) = xa+ yb.

(7) Prove that integers a, b are relatively prime if and only if then there exists x, y ∈ Z such
that 1 = xa+ yb.

(8) State and prove Euclid’s Lemma.

Or

Prove that if integers a, b, c, are such that a|bc and (a, b) = 1, then a|c.

(9) Prove that if a, b ∈ Z and b 6= 0 then (a, b) = (b, a+ xb) ∀ x ∈ Z.

(10) State Euclid’s algorithm for finding GCD of two non-negative integers.

(11) What do you mean by a prime numbers and a composite number?

(12) Prove that if a, b ∈ Z and prime p divides product ab, then either p|a or p|b.

2.7
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(13) Prove that [a, b]× (a, b) = ab ∀ a, b ∈ N.

(14) State and prove The Fundamental Theorem of Arithmetic (Unique factorization theorem
for integers)

Or

Prove that every positive integer n > 1 can be expressed as a product of prime numbers
and this factorization is unique apart from the order of prime factors.

(15) Prove that the set of primes is infinite.

(16) Prove that there are infinitely many primes of the form 4n− 1 or 4n+ 1 or 6n− 1.

(17) Prove that if prime p does not divide integer a then (a, p) = 1.

(18) What do you mean by a congruence relation?

(19) Show that any two integers a, b are congruent modulo n if and only if they leave the same
remainder when divided by n.

(20) Let a, b, c, d ∈ Z and n be a positive integer. Prove that

(i) a ≡ a ( mod n)

(ii) If a ≡ b ( mod n) then b ≡ a ( mod n).

(iii) If a ≡ b ( mod n) and b ≡ c ( mod n) then a ≡ c ( mod n).

(iv) If a ≡ b ( mod n) and c ≡ d ( mod n) then a+ c ≡ b+ c ( mod n), ac ≡ bc ( mod n),
a+ c ≡ b+ d ( mod n), and ac ≡ bd ( mod n).

(v) If a ≡ b ( mod n) then ak ≡ bk ( mod n) ∀ k ∈ N.

(21) Prove that if p is prime then φ(pk) = pk − pk−1 = pk
(

1− 1
p

)
∀ k ∈ N.

(22) Prove that if n is a positive integer with a prime factorization n = pk11 p
k2
2 · · · pkmm then

φ(n) =
(
pk11 − p

k1−1
1

)(
pk22 − p

k2−1
2

)
· · ·
(
pkmm − pkm−1

m

)
= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1
pm

)
.

(23) Prove that if the GCD of integers m,n is 1 then φ(mn) = π(m)φ(n).

(24) State Euler’s theorem, Fermat’s theorem and Wilson’s theorem.

2.7.2 Miscellaneous theory questions from unit II

(1) What do you mean by a function from R to RR, Define domain, co-domain and range of
a function. Define composite of two functions.

(2) Define injective, surjective and bijective functions, invertible function.

(3) Prove that if f : A→ B, g : B → C and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(4) Let f : A→ B and S, T be subsets of A. Prove that
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(i) If S ⊆ T then f(S) ⊆ f(T ).

(ii) f(S ∪ T ) = f(S) ∪ f(T ).

(iii) f(S ∩ T ) ⊆ f(S) ∩ f(T ).

(iv) S ⊆ f−1 (f(S)) .

(5) Let f : A→ B and X,Y be subsets of B. Prove that

(i) If X ⊆ Y then f−1(X) ⊆ f−1(Y ).

(ii) f−1(X ∪ Y ) = f−1(X) ∪ f−1(Y ).

(iii) f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ).

(iv) f
(
f−1(X)

)
⊆ X.

(6) Let f : A→ B and g : B → C. Prove that

(i) If f, g are injective then so is g ◦ f.
(ii) If f, g are surgective then so is g ◦ f.

(iii) If f, g are bijective then so is g ◦ f.
(iv) If g ◦ f is injective then so is f.

(v) If g ◦ f is surjective then so is g.

(7) Prove that if f : A→ B is invertible then f has unique inverse.

(8) Prove that if f : A→ B is invertible if and only if f is bijective.

(9) Define an equivalence relation, equivalence classes, partition of a set.

(10) Suppose R is an equivalence relation in non-empty set X. Prove that distinct equivalence
classes of R form a partition of set X.

(11) Suppose P = {Xi}i∈Λ is a partition of a non-empty set X. Prove that partition P induces
an equivalence relation R in set X for which the equivalence classes are precisely {Xi}i∈Λ.

(12) Prove that for each n ∈ N, the congruence relation modulo n is an equivalence relation in
Z.

2.7.3 Miscellaneous theory questions from unit III

(1) Define polynomial over F where F = Q,R or C, degree of a polynomial, leading coefficient,
monic polynomial.

(2) Let f(x), g(x) and h(x) be a polynomial over R. Prove that for each x ∈ R,

(i) (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x))

(ii) f(x) + g(x) = g(x) + f(x)

(iii) f(x) + 0 = 0 + f(x) = f(x)

(iv) (f(x) · g(x)) · h(x) = f(x) · (g(x) · h(x))

(v) f(x) · g(x) = g(x) · f(x)

2.7
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(vi) f(x) · 1 = 1 · f(x) = f(x)

(3) Prove that given if non-zero polynomials f(x), g(x) ∈ F [x] then deg(f(x)·g(x)) = deg(f(x))+
deg(g(x)).

(4) Define divisibility in polynomials.

(5) State Division algorithm in F [x]

(6) Let f(x), g(x) and h(x) be a polynomial over F and f(x) 6= 0. Prove that for each x ∈ R,

(i) f(x)|g(x) =⇒ f(x)|g(x) · h(x)

(ii) f(x)|g(x) =⇒ cf(x)|g(x) for each non-zero c ∈ F
(iii) f(x)|g(x) and g(x)|h(x) implies f(x)|h(x)

(iv) f(x)|g(x) and f(x)|h(x) implies f(x)|λ(x)g(x) + µ(x)h(x) for all λ(x), µ(x) ∈ F [x]

(v) If f(x)|g(x) and g(x) 6= 0 then deg(f(x)) ≤ deg(g(x)).

(7) Define GCD of two polynomials F [x].

(8) State and prove the remainder theorem for polynomials in F [x].

Or

Let a ∈ F and f(x) ∈ F [x]. Prove that the remainder when f(x) is divided by x − a in
F [x] is f(a).

(9) State and prove the factor theorem for polynomials in F [x].

Or

Let a ∈ F and f(x) ∈ F [x]. Prove that x − a is a factor of f(x) ∈ F [x] if and only if
f(a) = 0.

(10) Define root of a polynomial over F.

(11) Prove that a polynomial of degree n over field F has atmost n roots in F.

(12) State and prove the rational root theorem for polynomials having integer coefficients.

Or

Prove that if rational number a
b , gcd(a, b) = 1 is a root of polynomial a0 + a1x + a2x

2 +
· · ·+ anx

n, a0, a1, an ∈ Z, an 6= 0 then a|a0 and b|an.

(13) Prove that a rational root of a monic polynomial with integer coefficients is an integer.

(14) Let p(x), a(x) ∈ F [x] where F = Q or R or C. If p(x) is irreducible over F and p(x) 6 |a(x),
then gcd(p(x), a(x)) = 1.

(15) Prove that if complex number z ia s root of polynomial f(x) ∈ R[x] then its complex
conjugate z is also a root of f(x).

(16) Prove that a non-constant polynomial f(x) ∈ R[x] can be expressed as a product of Linear
and quadratic polynomials (which can’t be factorized further).
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Chapter 3

(USMT/UAMT 201) Calculus II

3.1 Practical 1.1: Limits and Continuity

3.1.1 Prerequisite of Practical 1.1:

(1) Limit Point: Let D ⊆ R and let c ∈ R. Then c is called a limit point of D if every
neighbourhood of c contains at least one point of D other than c.

(2) Let D ⊆ R and let c ∈ R be a limit point of D. Also, let f : D −→ R be a function.
We say that a limit of f as x tends to c exists if there is a real number L satisfying
the following ε − δ condition: For every ε > 0 there exists δ > 0 such that x ∈ D and
0 < |x− c| < δ =⇒ |f(x)− L| < ε. We then write lim

x−→p
f(x) = L.

(3) For example, using the definition of limit, let us show that lim
x→3

14− 2x = 8.

We show that, ∀ ε > 0, ∃ δ > 0 such that 0 < |x− 3| < δ =⇒ |(14− 2x)− 8| < ε.
Let ε > 0 be given.
We want to find δ > 0 such that 0 < |x− 3| < δ =⇒ |(14− 2x)− 8| < ε.
Suppose 0 < |x− 3| < δ, for some δ > 0.

Consider |(14− 2x)− 8| = |6− 2x| = 2|3− x| = 2|x− 3| < 2δ.

Hence, if we choose δ > 0 such that 2δ < ε then we have,
|(14− 2x)− 8| < 2δ < ε.

Hence, if 0 < δ <
ε

2
then 0 < |x− 3| < δ =⇒ |(14− 2x)− 8| < ε.

Thus, ∃ δ > 0 such that 0 < |x− 3| < δ =⇒ |(14− 2x)− 8| < ε.
Hence, lim

x→3
14− 2x = 8.

(4) Let D ⊆ R and let c ∈ R be a limit point of D. If f : D −→ R and lim
x→c

f(x) exists then

it is unique.

(5) Let D ⊆ R, c ∈ R be a limit point of D. and let f : D −→ R be such that lim
x→c

f(x) = L

for some L ∈ R. Then

3.1
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(i) If L > 0, then there is δ > 0 such that f(x) > 0 for all x ∈ D satisfying 0 < |x−c| < δ.

(ii) If L < 0, then there is δ > 0 such that f(x) < 0 for all x ∈ D satisfying 0 < |x−c| < δ.

(iii) Hence if L 6= 0 then there is δ > 0 such that f(x) 6= 0 for all x ∈ D satisfying
0 < |x− c| < δ.

(6) Let D ⊆ R, c ∈ R be a limit point of D. and let f : D −→ R be such that lim
x→c

f(x) = L

for some L ∈ R. Then there exist K, δ > 0 such that

|f(x)| ≤ K for all x ∈ D satisfying 0 < |x− c| < δ.

(7) Let D ⊆ R and let c ∈ R be a limit point of D. If f : D −→ R and lim
x→c

f(x) = L for some

L ∈ R. If there is δ1 > 0, such that

(i) f(x) > 0 for all x ∈ D satisfying 0 < |x− c| < δ1 then L ≥ 0.

(ii) f(x) < 0 for all x ∈ D satisfying 0 < |x− c| < δ1 then L ≤ 0.

(8) Let D ⊆ R and let c ∈ R be a limit point of D. If f, g : D −→ R and L,M ∈ R. Then

(i) lim
x→c

f(x) = L if and only if lim
h→0

f(c+ h) = L.

(ii) if lim
x→c

f(x) = 0 and there exists K, δ1 > 0 such that |g(x)| ≤ K for all x ∈ D satisfying

0 < |x− c| < δ1 then lim
x→c

f(x)g(x) = 0.

(iii) if f(x) ≤ g(x) for all x ∈ D and lim
x−→p

f(x) = L, lim
x−→p

g(x) = M then L ≤M.

(iv) If lim
x→p

f(x) = L then lim
x→p
|f(x)| = |L|. (Converse not true)

(9) Algebra of Limits: Let D ⊆ R and let c ∈ R be a limit point of D. Also, let L,M ∈ R
and f, g : D −→ R be functions such that lim

x→c
f(x) = L and lim

x→c
g(x) = M . Then

(1) Sum Rule: lim
x→c

(f + g)(x) = L+M.

(2) Constant Multiple: lim
x→c

(rf)(x) = rL for every r ∈ R.

(3) Product Rule: lim
x→c

(fg)(x) = L M.

(4) Quotient Rule: lim
x→c

(
f

g

)
(x) =

L

M
, whenever g(x) 6= 0,∀ x ∈ D and M 6= 0.

(10) Sandwich Theorem for limit of a function
Let D ⊆ R and let c ∈ R be a limit point of D. Also, let L ∈ R and let f, g, h : D −→ R
be such that f(x) ≤ h(x) ≤ g(x), for all x ∈ D and lim

x→c
f(x) = L = lim

x→c
g(x). Then

lim
x→c

h(x) = L.

(11) Left-hand Limit: Let D ⊆ R and let c ∈ R be a limit point of D ∩ (−∞, c), that is,
every neighbourhood of c contains at least one point say x from D such that x < c. Also,
let f : D −→ R be a function. We say that a left (hand) limit of f as x tends to c (from
the left) exists if there is L ∈ R satisfying the following ε − δ condition: For every ε > 0
there exists δ > 0 such that x ∈ D, c− δ < x < c =⇒ |f(x)− L| < ε. We then write
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f(x) −→ L as x −→ c− or lim
x→c−

f(x) = L.

if ∀ ε > 0, ∃ δ > 0 such that p− δ < x < p =⇒ |f(x)− L| < ε.

(12) Right-hand Limit: Let D ⊆ R and let c ∈ R be a limit point of D ∩ (c,∞), that is,
every neighbourhood of c contains at least one point say x from D such that c < x. Also,
let f : D −→ R be a function. We say that a right (hand) limit of f as x tends to c
(from the right) exists if there is L ∈ R satisfying the following ε− δ condition: For every
ε > 0 there exists δ > 0 such that x ∈ D, c < x < c+ δ =⇒ |f(x)− L| < ε. We then write

f(x) −→ L as x −→ c+ or lim
x→c+

f(x) = L

(13) Let D ⊆ R and let c ∈ R be such that c is a limit of D ∩ (−∞, c) as well as of D ∩ (c,∞).
Also, let f : D −→ R be a function. Then
lim
x−→c

f(x) exists ⇐⇒and i lim
x→c−

f(x) and lim
x→c+

f(x) exist and are equal.

In this case, lim
x−→c

f(x) = lim
x→c−

f(x) = lim
x→c+

f(x).

3.1
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(14) The following limits do not exist.

(i) lim
x−→0

1

x
(ii) lim

x−→0

1

x2
(iii) lim

x−→1

1

x− 1
(iv) lim

x−→0

1√
x

(15) Let D ⊆ R and let c ∈ R be a limit point of D. Also, let f : D −→ R be a function. We
say that f(x) tends to infinity as x tends c, if the following α − δ condition holds: for
every α > 0, there is δ > 0 such that x ∈ D and 0 < |x − c| < δ =⇒ f(x) > α. We then
write

lim
x→c

f(x) =∞.

(16) Let D ⊆ R and let c ∈ R be a limit point of D. Also, let f : D −→ R be a function. We
say that f(x) tends to -infinity as x tends c, if the following β − δ condition holds: for
every β < 0, there is δ > 0 such that x ∈ D and 0 < |x − c| < δ =⇒ f(x) < β. We then
write

lim
x→c

f(x) = −∞.

(17) Suppose D ⊆ R is not bounded above and f : D −→ R is a function. We say that a limit
of f as x tends to ∞ exists if there is L ∈ R satisfying the following ε − α condition: for
every ε > 0, there is α > 0 such that x ∈ D,x > α =⇒ |f(x)− L| < ε. We then write

f(x) −→ L as x −→∞ or lim
x−→∞

f(x) = L.

(18) Suppose D ⊆ R is not bounded below and f : D −→ R is a function. We say that a limit
of f as x tends to −∞ exists if there is L ∈ R satisfying the following ε− β condition: for
every ε > 0, there is β < 0 such that x ∈ D,x < β =⇒ |f(x)− L| < ε. We then write

f(x) −→ L as x −→ −∞ or lim
x−→−∞

f(x) = L.

(19) Some limits:

(i) lim
x−→∞

1

x
= 0 = lim

x−→−∞

1

x
.

(ii) lim
x−→∞

x3 =∞.

(iii) lim
x−→−∞

x3 = −∞.

(iv) lim
x−→0+

1

x
=∞.

(v) lim
x−→0−

1

x
= −∞.

(20) Let D ⊆ R and let c ∈ D. Also let f : D −→ R be a function. We say that f is continuous
at c if f satisfies the following ε− δ condition:
For every ε > 0, ∃ δ > 0 such that x ∈ D, |x− c| < δ =⇒ |f(x)− f(c)| < ε.
In case f is continuous at every c ∈ D, we say that f is continuous on D.
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(21) Let D ⊆ R and c ∈ D. A function f : D → R is said to be discontinuous at c if f is
not continuous at c, that is, if there exists ε > 0 such that for all δ > 0, ∃ x ∈ D with
|x− c| < δ but |f(x)− f(c)| ≥ ε.

(22) Some continuous functions and discontinuous functions.

(i) Let a, b ∈ R. Let f : R −→ R be defined by f(x) = ax + b for all x ∈ R. Then f is
continuous on R.

(ii) f : R −→ R, f(x) = |x| for all x ∈ R. Then f is continuous on R.
(iii) f : R −→ R, f(x) = [x] for all x ∈ R. Then f is continuous at every c ∈ R \ Z.

(iv) f : R −→ R defined by f(x) =

{
x if x ∈ Q,
−x if x ∈ R \Q.

Then f is continuous only at c = 0.

(v) f : R −→ R, f(x) = [x] for all x ∈ R. Then f is discontinuous at every c ∈ Z.

(vi) f : R −→ R be the Dirichlet function defined by f(x) =

{
1 if x rational ,

0 if x irrational.
.

Then f is discontinuous at every c ∈ R.
(vii) Let f : [0, 1] −→ R be the Thomae function defined by

f(x) =


1

q
if x = p

q , where p, q ∈ Z, q > 0, gcd(p, q) = 1,

0 if x is an irrational number.

is continuous at every irrational number in [0, 1] and discontinuous at every rational
number in [0, 1].

(23) Relation between the concepts of limit and continuity:
Let D ⊆ R, and let c ∈ R be a limit point of D. Also, let f : D −→ R be a function. Then
f is continuous at c if and only if lim

x−→c
f(x) exists and is equal to f(c).

We use the above statement to show that the Thomae function defined above (21: (vii)) is
continuous at every irrational number in [0, 1] and discontinuous at every rational number
in [0, 1].
First we will show that lim

x−→c
f(x) = 0 for every c ∈ R.

We use the ε− δ definition.
Let ε > 0.
We have to find δ > 0, such that x ∈ R, 0 < |x− c| < δ =⇒ |f(x)− 0| < ε.
(Recall that 0 < |x− c| < δ if and only if x ∈ (c− δ, c+ δ) \ {c}).
Since ε > 0, by Archimedean Property, there exists n0 ∈ N such that

1

ε
< n0.

Let S =

{
p

q
∈ [0, 1] : p, q ∈ Z, 0 < q < n0, gcd(p, q) = 1

}
. Then S is finite.

Choose δ > 0 such that (c− δ, c+ δ) \ {c} does not contain any
p

q
∈ S.

So, x ∈ (c− δ, c+ δ) \ {c} =⇒ x 6= S.

Hence x ∈ (c− δ, c+ δ) \ {c} implies either x is irrational or x =
p

q
, q > n0.

Thus x ∈ (c− δ, c+ δ) \ {c} =⇒ f(x) = 0 or f(x) =
1

q
where q > n0.

This implies, |f(x)− 0| = 0 if x irrational or |f(x)− 0| = 1

q
<

1

n0
.

3.1
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In any case |f(x)− 0| < ε as 0 < ε and
1

n0
< ε.

Hence x ∈ (c− δ, c+ δ) \ {c} =⇒ |f(x)− 0| < ε.
That is, 0 < |x− c| < δ =⇒ |f(x)− 0| < ε.
Hence lim

x−→c
f(x) = 0.

Therefore, lim
x−→c

f(x) = f(c) if and only if f(c) = 0.

Hence f is continuous at c if and only if f(c) = 0 (by above statement no. (23)).
But from the definition of the function, f(x) = 0 if and only if x is an irrational number.
Therefore Hence f is continuous at c if and only if c is an irrational number.
Thus f is continuous only at irrational numbers in [0, 1] and discontinuous at every rational
number in [0, 1].

(24) Algebra of Continuous functions: Let D ⊆ R, c ∈ D and f, g : D −→ R be functions
such that f, g are continuous at c. Then

(i) f + g is continuous at c.

(ii) rf is continuous at c for every r ∈ R.
(iii) fg is continuous at c.

(iv) If g(x) 6= 0 for all x ∈ D then
f

g
: D −→ R is continuous at c.

(25) Removable discontinuity: Let f : R → R be a function. A point c ∈ R is said to be
removable discontinuity of f if lim

x→c
f(x) exists but it is not equal to f(c).

(26) Essential discontinuity: Let f : R → R be a function. A point c ∈ R is said to be
essential discontinuity of f if lim

x→c
f(x) does not exist.

(27) Let f : R→ R be a function. c ∈ R is called as jump discontinuity of f if both Left hand
limit as well as Right hand limit of f exist at c but they are not equal.



109

3.1.2 Practical 1.1: Limits and Continuity

(A) Objective Questions:

Choose correct alternative in each of the following:

(1) The value of lim
x→∞

3x3 + 2x

4x3 − 3
is

(a) 1
3 (b) 1 (c) 3

4 (d) does not exist

(2) The value of lim
x→2

x− 2

x2 − 4
is

(a) 1
4 (b) 4 (c) 3

4 (d) does not exist

(3) If f : R \ {1} −→ R is given by f(x) := [x]− x then lim
x−→1

f(x) is

(a) 1 (b) −1 (c) 0 (d) does not exist

(4) If f(x) =
tanx

x
, for x 6= 0 then lim

x→0
f(x)

(a) 1 (b) −1 (c) does not exist (d) none of these

(5) If f : R \ {1} −→ R is given by f(x) :=
[x− 1]

x− 1
then lim

x−→1
f(x) is

(a) 1 (b) −1 (c)
x− 3

x2 − 2x− 3
(d)

x+ 3

x− 3

(6) Which of the following functions has a removable discontinuity at x = 2?

(a)
cos(x− 2)

x− 2
(b)

x+ 2

x− 2 (c)
x2 − x− 2

x− 2
(d)

1

log(x− 2)

(7) Let f : R→ R be defined as f(x) =

{
x, if x < 0

ex, if x ≥ 0
then lim

x→0+
f(x) is

(a) 0 (b) 1 (c) e (d) does not exist

(8) The value of lim
x→0

|x|
x

(a) −1 (b) 1 (c) does not exist (d) None of these

3.1
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(9) If f(x) =

{
2x+ 1 for x < 0

x− 1 for x ≥ 0
then x = 0 is a point at which the function f is

(a) discontinuous (b) continuous (c) not defined (d) decreasing

(10) The function f(x) = |x|, x ∈ R is

(a) continuous

(b) continuous only if x > 0

(c) discontinuous

(d) None of these

(11) The function f(x) = x2 + x, x ∈ R is

(a) continuous

(b) continuous only if x > 0

(c) always negative

(d) None of these

(12) The value of lim
n−→∞

xn for 0 < x <
1

3
is

(a) 1 (b) 0 (c) −1 (d)
1

3

(13) The function f(x) = |x− 2|+ 3, x ∈ R is

(a) discontinuous at x = 3.

(b) discontinuous at x = 2.

(c) continuous everywhere in R.

(d) none of these.

(14) The value of lim
x−→0+

|x|
x

is

(a) 1 (b) −1 (c) 0 (d) none of these.

(15) Which of the following function has removable discontinuity at x = 3

(a) f : R −→ R, f(x) = bxc.

(b) f : R −→ R, f(x) =


√

2x2 − 2− 4

x− 3
if x 6= 3

3 if x = 3
.

(c) f : R −→ R, f(x) =


x2 − 9

x− 3
if x 6= 3

6 if x = 3

(d) none of the above.

(16) lim
x−→−2

x2 − x− 6

x+ 2
is
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(a) 5 (b) 15 (c) −5 (d) None of these.

(17) The function f : R −→ R, f(x) = 2x2 − 8 is continuous

(a) for each x ∈ R.
(b) discontinuous at x = −2.

(c) discontinuous at x = 2.

(d) none of these.

(18) Let f(x) =

{
2x+ 4 if x < 4

3b if x ≥ 4.
. If f is continuous on R then the value of Y is

(a) 2 (b) 4 (c) 3 (d) none of the
above.

(19) If f : R −→ R, f(x) = 3 for all x ∈ R then lim
x−→7

f(x) is

(a) 10 (b) 21 (c) 3 (d) 7

(20) lim
x−→p

(sinx+ cosx), where p is a fixed real number is

(a) 1 (b) sin p+ cos p. (c) sin p− cos p. (d) Doesn’t exist.

(21) Consider f, g : R −→ R and c ∈ R.Under which of the following condition does lim
x−→c

f(x)g(x) =

0?

(a) lim
x−→c

f(x) = 0.

(b) lim
x−→c

f(x) = L,L 6= 0 and g is bounded on {x ∈ R : 0 < |x− c| < δ} for some δ > 0

(c) lim
x−→c

f(x) = 0 and g is bounded on {x ∈ R : 0 < |x− c| < δ} for some δ > 0.

(d) lim
x−→c

f(x) = L,L 6= 0 and lim
x−→c

g(x) = M,M 6= 0.

(22) lim
x−→p

tanx, where p is a fixed real number

(a) 0 (b) tan p (c) may or may not
exist.

(d) None of these.

(23) lim
x−→0

x sin

(
1

x

)
=

3.1
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(a) 1 (b) 0 (c)
π

2
(d) Doesn’t exist.

(24) lim
x−→0

x[x] =

(a) −1 (b) 0 (c) 1 (d) Doesn’t exist.

(25) lim
x−→5

bxc =

(a) 5 (b) 4 (c) 6 (d) Doesn’t exist.

(26) lim
x−→1.5

bxc =

(a) 1.5 (b) 0 (c) 1 (d) Doesn’t exist.

(27) lim
x−→π

dxe =

(a) π (b) 3.14 (c) 4 (d) Doesn’t exist.

(28) lim
x−→e

dxe =

(a) e (b) 2.718 (c) 3 (d) Doesn’t exist.

(29) lim
x−→π

2

ecosx =

(a) e (b) 0 (c) 1 (d) Doesn’t exist.

(30) lim
x−→1

cos
(
log(x2 + 2x− 2) + sin(x− 1)

)
=

(a) π
2 (b) 0 (c) 1 (d) Doesn’t exist.

(31) lim
x−→0

|x|
x

=

(a) −1 (b) 0 (c) 1 (d) Doesn’t exist.

(32) If f : R −→ R, is defined as f(x) =

{
x if x < 0,

ex if x ≥ 0
then lim

x−→0+
f(x)
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(a) e (b) 0 (c) 1 (d) None of the
above.

(33) Consider the following statements:

(i) lim
x−→a

f(x) = L =⇒ f(a) = L.

(ii) lim
x−→a

f(x) = L =⇒ f(a) is a real number.

(a) Only (i) is true.

(b) Only (ii) is true.

(c) Either (i) or (ii) is true.

(d) Neither (i) nor (ii) is true.

(34) Consider the following statements:

(i) lim
x−→a

f(x) = L =⇒ f(a) = L.

(ii) f(a) = L =⇒ lim
x−→a

f(x) is a real number.

(a) Only (i) is true.

(b) Only (ii) is true.

(c) Either (i) or (ii) is true.

(d) Neither (i) nor (ii) is true.

(35) If lim
x−→a

f(x) = L and lim
x−→a

g(x) = M, then lim
x−→a

(
f(x)

g(x)

)
=

L

M
is

(a) LM (b)
L

M
(c)

M

L
(d)

L

M
, if M 6= 0.

(36) If f : R −→ R, is defined as f(x) =

{
x2 if x > 2,

x3 if x ≤ 2
then f is continuous ———–

(a) everywhere (b) at 2. (c) on R \ {2}. (d) None of the
above.

(37) The function defined by f(x) =

{
sinx if x ≥ π

4 ,

cosx if x <
π

4
then f is continuous ———–

(a) everywhere. (b) only at x = π
4 . (c) on R \

{
π
4

}
. (d) Nowhere.

(38) The function defined by f(x) =

{
x2 + 1 if x 6= 5,

α if x = 5
is continuous at 5, ———–

3.1
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(a) for any α ∈ R. (b) if α = 6. (c) if α = 26. (d) None of these.

(39) The function defined by f(x) =

{
cosx+ 1 if x 6= π,

α if x = π
is continuous at π, ———–

(a) for any α ∈ R. (b) if α = 1. (c) if α = π + 1. (d) None of these.

(40) The function defined by f(x) =


x2 if x > 0,

1 if x = 0

x3 if x < 0

then f is continuous at 5, ———–

(a) only at x = 0. (b) at every x ∈ R. (c) on R \ {0}. (d) nowhere.

(41) The function defined by f(x) =

{
1 if x ∈ Q,
−1 if x ∈ R \Q

is continuous ———–

(a) at every rational number only.

(b) only at 0

(c) at every irrational number only.

(d) Nowhere.

(42) Amongst the following, the false statement is ————

(a) There exists a function f : R −→ R, which is discontinous only at one point.

(b) There exists a function f : R −→ R, which is continous only at one point.

(c) At least one of (a) and (b) is true.

(d) At least one of (a) and (b) is false.

(43) 3 is a removable discontinuity of

(a)
x2 + 2x− 3

x− 3
(b)

1

sin(x− 3)
(c)

x+ 3

x− 3
(d)

x− 3

x2 − 2x− 3

(44) Which of the following function has a removable discontinuity at x = 2?

(a)
cos(x− 2)

x− 2
(b)

x+ 2

x− 2
(c)

1

log(x− 2) (d)
x2 − x− 2

x− 2

(B) Descriptive Questions

(1) Find the value of δ so that

(i) 0 < |x− 2| < δ =⇒ |f(x)− 2| < 0.1, where f(x) = x.

(ii) 0 < |x− 2| < δ =⇒ |f(x)− 11| < 0.5, where f(x) = 3x+ 5.

(iii) 0 < |x− 2| < δ =⇒ |f(x) + 4| < 0.1, where f(x) = 7x− 18.

(2) Use ε− δ definition to prove the following.
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(i) lim
x−→3

(2x+ 3) = 9

(ii) lim
x−→1

(7− 3x) = 4

(iii) lim
x−→2

x2 = 4

(iv) lim
x−→4

√
x = 2

(v) lim
x−→p

cosx = cos p, p ∈
R.

(3) Given that 1− x
2

4
≤ h(x) ≤ 1+

x2

4
, for all x 6= 0. Use Sandwich Theorem to find lim

x→0
h(x).

(4) It can be shown that the inequalities 1 − x2

6
<

x sin x

2− 2 cos x
< 1 hold for all values of x

close to zero. Use Sandwich Theorem to find lim
x→0

x sinx

2− 2 cosx
.

(5) Using Sandwich Theorem show that lim
x→0

x sin

(
1

x

)
= 0.

(6) Suppose g : R −→ R is such that
sinx

x
≤ g(x) ≤ 1 for every x ∈ R \ {0}. Show that

lim
x−→0

g(x) = 1, using Sandwich Theorem.

(7) f : R −→ R is defined as follows. Discuss continuity of f at x = 1.

(i) f(x) = x2.

(ii) f(x) = 2x− 6

(iii) f(x) = x2 + 3x+ 5

(iv) f(x) =

{
x if x ≥ 1,

1 if x < 1

(v) f(x) =

{
x2 if x ≥ 1,

x3 if x < 1
.

(vi) f(x) =

{
3x if x > 1,

2x2 + 1 if x ≤ 1
.

(vii) f(x) =


2x+ 6 if x > 1,

7 if x = 1

x2 + 7 if x < 1

.

(viii) f(x) =


3x− 2 if x > 1,

1 if x = 1

2x+ 3 if x < 1

.

(ix) f(x) =


bxc if x > 1,

1 if x = 1

dxe if x < 1

.

(8) f : R −→ R is defined as follows. Find α if f is continuous at the given point a.

(i) f(x) =

{
sinx if x ≥ π

4 ,

α2 cosx if x < π
4

, a =
π

4

(ii) f(x) =

{
cosx if x ≥ 0,

x+ α if x < 0
, a = 0.

(iii) f(x) =

{
log x if x ≥ 1,

x+ α2 if x < 1
, a = 1.

(iv) f(x) =

{
x2 + 3x+ 2 if x ≥ 1,

α2x+ 4 if x < 1
, a =

1.

(v) f(x) =


2x+ 3 if x ≥ 3,

α2 if x = 3

6− α if x < 3

, a = 3.

(9) Show that the function f(x) =

{
3− 2x if x > 3,

α2 if x ≤ 3
remains discontinuous at 3 for any

α ∈ R.

(10) Show that the function f(x) =

{
3 + x if x > 1,

sinα if x ≤ 1
remains discontinuous at 1 for any

α ∈ R.

3.1
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(11) Show that the function f(x) =


x− 3 if x > 2,

α if x = 2,

6 + x if x < 2

remains discontinuous at 2 for any

α ∈ R.

(12) Find the maximum value of r > 0, such that f(x) = x2−4 remains negative on (1−r, 1+r).

(13) Find the maximum value of r > 0 such that the function f(x) = 9 − x2 remains positive
on (2− r, 2 + r).

(14) State examples for each of the following.

(i) A function f such that lim
x−→p

|f(x)| exists but lim
x−→p

f(x) does not exist.

(ii) Functions f, g such that lim
x−→p

f(x) and lim
x−→p

g(x) exist but lim
x−→p

f(x)

g(x)
does not exist.

(iii) Functions f, g such that neither is continuous any where in R but the function f + g
is continuous everywhere in R.

xxxxxxxxxx

3.2 Practical 1.2: Algebra of limits and continuity, Sequen-
tial Continuity, Intermediate Value Theorem, Bolzano-
Weierstrass Theorem

3.2.1 Prerequisite of Practical 1.2

(1) Sequential Continuity:

Let D ⊆ R, c ∈ D and let f : D → R be a function. Then f is continuous at c if and only
if for each sequence (xn) in D converging to c, the sequence (f(xn)) converges to f(c).

(i) We will show that the Dirichlet function (given in the prerequisite no. (21) (vi)
of practical number 1 of the second semester) is not continuous at any real number.
The function is defined as follows:

f : R −→ R defined by f(x) =

{
1 if x is rational,

0 if x is irrational.
Using sequential continuity, we can show that f is discontinuous at every c ∈ R.
Suppose c ∈ R be such that f is continuous at c.
By prerequisite of practical no. 1.4 (17) of semester I, there is a sequence of rational
numbers say (xn) −→ c.
As f is continuous at c, xn −→ c =⇒ f(xn) −→ f(c).
Now, f(xn) = 1 for all n ∈ N. (as (xn) is a sequence of rationals ).
So, f(xn) −→ 1.
But f(xn) −→ f(c) (as f is continuous at c).
Since a convergent sequence converges to a unique limit, f(c) = 1. (∗)
Now, by prerequisite of practical no. 1.4 (18) of semester I, there is a sequence of
irrational numbers say (yn) −→ c.
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Let (yn) be a sequence of irrational numbers such that yn −→ c.
As f is continuous at c, yn −→ c =⇒ f(yn) −→ f(c).
Now, f(yn) = 0 for all n ∈ N. (as (yn) is a sequence of irrationals ).
So, f(yn) −→ 0.
But f(yn) −→ f(c) (as f is continuous at c).
Since a convergent sequence converges to a unique limit, f(c) = 0. (∗∗)
Hence, from (∗) and (∗∗), 1 = 0. This is a contradiction.
Thus if c ∈ R then f is not continuous at c.
Hence f is discontinuous at every c ∈ R.

(ii) Let f : R −→ R be the defined by f(x) =

{
x if x is rational,

−x if x is irrational.

This function is given in the prerequisite no. (21-iv) of practical 1 of semester II
paper I.
Using sequential continuity, we can show that f is continuous only at 0.
Let c ∈ R be such that f is continuous at c.
Let (xn) be a sequence of rational numbers such that xn −→ c.( by prerequisite of
practical 1.4:(17) of semester I)
As f is continuous at c, xn −→ c =⇒ f(xn) −→ f(c).
Now, f(xn) = xn for all n ∈ N. (as (xn) is a sequence of rationals ).
So, f(xn) −→ c (as xn −→ c).
But f(xn) −→ f(c) (as f is continuous at c).
Since a convergent sequence converges to a unique limit, f(c) = c. (∗)
Let (yn) be a sequence of irrational numbers such that yn −→ c.( by prerequisite of
practical 1.4:(18) of semester I)

As f is continuous at c, yn −→ c =⇒ f(yn) −→ f(c).
Now, f(yn) = −yn for all n ∈ N. (as (yn) is a sequence of irrationals ).
So, f(yn) −→ −c (as yn −→ c =⇒ −yn −→ −c).
But f(yn) −→ f(c) (as f is continuous at c).
Since a convergent sequence converges to a unique limit, f(c) = −c. (∗∗)
Hence, from (∗) and (∗∗), c = −c. This implies 2c = 0 and hence c = 0.
Thus if f is continuous at c then c = 0.
Hence f is continuous only at c. .

(2) Intermediate Value Property: Let I be an interval and f : I −→ R be a function.
We say that f has the Intermediate Value Property (in short, f has IVP) on I if for all
a, b ∈ I with a < b and r ∈ R,

r lies between f(a) and f(b) =⇒ r = f(c) for some c ∈ (a, b).

(3) Intermediate Value Theorem: Let I be an interval and f : I −→ R be a continuous
function. Then f has the IVP on I i.e. for any a, b ∈ I, a < b and r ∈ R, r lies between
f(a) and f(b) then there exists c ∈ (a, b) such that r = f(c). In particular, f(I) is an
interval.

(4) Bolzano-Weierstrass Theorem: Let f : [a, b] −→ R be a continuous function. Then

(i) f is a bounded function, and

3.2
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(ii) f attains its bounds on [a, b], that is, there are r, s ∈ [a, b] such that

f(r) = inf{f(x) : x ∈ [a, b]} and f(s) = sup{f(x) : x ∈ [a, b]}.

3.2.2 PRACTICAL 1.2

(A) Objective Questions:

Choose correct alternative in each of the following:

(1) If lim
x−→6

f(x) = 8 and lim
x−→6

g(x) = −9 then lim
x−→6

7 3
√
f(x)− 6g(x)

7 + g(x)
=

(a) 20 (b) −55 (c) −34 (d) −41

(2) lim
x−→0

|x+ 1|+ |x− 1| − 2

x
=

(a) −1 (b) 1 (c) 0 (d) does not exist.

(3) If lim
x−→0

xf(x) = 3 then lim
x−→0

f(x)

|x|
=

(a) 3 (b) −3 (c) 1 (d) does not exist.

(4) lim
x−→0

(
√

(3 + x)−
√

3)

x
=

(a)
√

3 (b) 0 (c)
1

2
√

3
(d) does not exist.

(5) Suppose g(x) ≤ f(x) ≤ h(x) for all values of x. If g(x) = −x2 − 1, h(x) = cos 3x then
lim
x−→0

f(x) =

(a) 1 (b) −1 (c) 0 (d) can not be de-
termined.

(6) If lim
x−→a

f(x) = L, which one of the following expression is necessarily true?

(a) f is continuous at x = a

(b) f(a) does not exist.

(c) f(a) = L

(d) lim
x−→a+

f(x) = L.

(7) The function f(x) =
(7x− 1)

(x3 − 4x)
is continuous on

(a)
(
−∞, 1

7

)
∪
(

1
7 ,∞

)
(b) (−∞, 2) ∪ (−2, 2) ∪ (2,∞)

(c) (−∞,−2) ∪ (−2, 0) ∪ (0, 2) (2,∞)

(d) (−∞, 0) ∪ (0,∞) does not exist.

(8) Suppose f : R −→ R is continuous function and takes only rational values. If f(0) = 3
then f(2) =
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(a) 0 (b) 1 (c) −3 (d) none of the
above.

(9) The number of points where g ◦ f is discontinuous given that f(x) =
1

(x− 3)
and g(x) =

1

(x2 + x− 1)
is

(a) 1 (b) 2 (c) 3 (d) 4.

(10) Let f(x) =

{
cx2 + 2x if x < 2

2x+ 4 if x ≥ 2
.

For what value of the constant c is the function f continuous on R?

(a) 4 (b) 2 (c) 0 (d) 1

(11) Let f(x) =


x− |x|
x

if x 6= 0

2 if x = 0
.

Then f is

(a) continuous everywhere.

(b) continuous for all x except x = 1.

(c) continuous for all x except x = 0.

(d) none of these.

(12) Let f(x) =
1

(x2 + 1)
for all x ∈ R then f is

(a) bounded below.

(b) bounded above.

(c) bounded.

(d) neither bounded below nor bounded
above.

(13) Let f(x) =
x

(x2 + 1)
, for all x ∈ R then

(a) f is bounded and attains both its bounds.

(b) f is bounded and attains only infimum of f .

(c) f is bounded and attains only supremum of f .

(d) f is bounded and does not attain any of its bounds.

(14) lim
x−→∞

x+ 4

3x2 + 2
=

(a) 1
3 (b) 0 (c) 4

3 (d) does not exist.

(15) lim
x−→∞

x2 sin

(
1

x

)
=

(a) 1 (b) 0 (c) ∞ (d) none of the
above.

(B) Descriptive Questions

3.2
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(1) Show that f : R −→ R is not continuous at p = 0, where

f(x) =

sin

(
1

x

)
, if x 6= 0

0, if x = 0

.

(2) Show that lim
x−→1

2x2 + 4x− 6

x− 1
= 8 using ε− δ definition.

(3) Find constants a and b such that lim
x−→0

√
ax+ b− 2

x
= 1.

(4) Find lim
x−→1.5+

2x2 − 3x

|2x− 3|
and lim

x−→1.5−

2x2 − 3x

|2x− 3|
. Does lim

x−→1.5

2x2 − 3x

|2x− 3|
exist? Justify your

answer.

(5) Is there a number Y such that lim
x−→−2

bx2 + 15x+ 15 + b

x2 + x− 2
exists? If so, find the value of Y

and the value of the limit.

(6) Let I be an open interval in R such that 4 ∈ I and let f : I \ {4} −→ R be a function.
Evaluate lim

x−→4
f(x) where x+ 2 ≤ f(x) ≤ x2 − 10 for all x ∈ I \ {4}.

(7) Use Sandwich Theorem to show that lim
x−→0+

√
xesin( 1

x
) .

(8) Compute the following limits.

(i) lim
x−→1

lnx

sin(πx)

(ii) lim
x−→∞

x√
x2 + 1

(iii) lim
x−→0

(1− 2x)
1
x

(iv) lim
x−→0

(sinx)100

x99 sin 2x

(v) lim
x−→∞

(
√
x2 + x− x)

(vi) lim
x−→∞

x2

ex

(vii) lim
x−→1

sin(x− 1)

x2 + x− 2

(viii) lim
x−→4

1√
x− 2

− 4

x− 4

(ix) lim
x−→1

x2 − 1

e1−x2 − 1

(x) lim
x−→∞

√
x2 + 4x

4x+ 1

(xi) lim
x−→−∞

(x+
√
x2 + 2x

(xii) lim
x−→−∞

√
x2 + 4x

4x+ 1

(9) f(x) =

{
x sin

(
1
x

)
if x 6= 0

0 if x = 0
. Show that f is continuous at 0 using ε− δ definition.

(10) If f(x) =
√
x, for all x > 0, show that f is continuous at 0 using sequential criterion for

continuity.

(11) Let f(x) =

{
sin
(

1
x

)
if x 6= 0,

0 if x = 0.
Show that f is not continuous using sequential criterion

for continuity.

(12) Let f(x) =

{
1 if x ∈ Q,
0 if x ∈ R \Q.

Show that f is not continuous at any point using sequential

criterion for continuity.
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(13) Let f(x) =

{
x if x ∈ Q,
1− x if x ∈ R \Q.

Show that f is continuous only at x =
1

2
using sequen-

tial criterion for continuity.

(14) f, g : R −→ R are functions and p ∈ R. Prove or disprove the following.

(i) If f + g is continuous at p then either f or g is continuous at p.

(ii) If f ∗ g is continuous at p then either f or g is continuous at p.

(iii) If |f | is continuous at p then either f is continuous at p.

(15) Give an example of a function in each of the following examples.

(i) A continuous but not bounded function on (a, b).

(ii) A continuous bounded function that attains its infimum but does not attain its supre-
mum.

(iii) A continuous bounded function that attains its supremum but does not attain its
infimum.

(16) Consider f : [0, 1]→ [0, 1] defined as f(x) =

{
x if x ∈ Q,
1− x if x ∈ R \Q.

Show that f(I) is an interval. Also show that f does not have Intermediate Value Property.

(17) Use the Intermediate Value Theorem in each of the following examples.

(i) Show that the equation x3 − 15x+ 1 = 0 has 3 solutions in the interval [−4, 4].

(ii) Show that the equation x2 =
√
x+ 1 has a solution in [1, 2].

(iii) Show that the function f(x) = (x− a)2(x− b)2 + x takes the value
a+ b

2
for some x.

(iv) Prove that if f, g are continuous on [a, b] and f(a) > g(a) and f(b) < g(b) then there
is a point c ∈ (a, b) such that f(c) = g(c).

(v) Show that there is a square whose diagonal has length between r and 2r and has area
equal to half the area of the circle of radius r.

(vi) Show that there is a right circular cylinder of height h and radius less than r whose
volume is equal to that of the right circular cone of height h and radius r.

(vii) Show that 2x =
10

x
for some x > 0.

(viii) Show that 2x =
10

x
has no solution for x < 0.

(ix) Show that 23x = 10 for some x > 0.

(18) Let f : [0, 1] −→ R be a continuous functions such that f(0) = f(1). Prove that there
exists c ∈

[
0, 1

2

]
such that f(c) = f

(
c+ 1

2

)
. [Hint: Define g(x) = f(x)− f(x+ 1

2)]

(19) By using Q. 18, show that at any given time there are antipodal points on the equator of
the earth that have the same temperature. (The antipode of any place on the Earth is the
point on the Earth’s surface which is diametrically opposite to it).

(20) Give an example of a function f : R −→ R such that f is continuous everywhere in R
except at x = 3 where it has a removable discontinuity.
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(21) Show that there does not exist a continuous onto function form [0, 1] to (0,∞).

(22) Let f, g : R −→ R be continuous functions. Suppose f(r) = g(r) for all r ∈ Q then show
that f(x) = g(x) for all x ∈ R.

(23) Fill in the blanks by choosing correct alternative from: (root, negative, f(2), positive,
(−2, 0), (−2, 2), continuous)
Consider the function f(x) = x2 − 2, defined on the set of real numbers. The function is
− − − − − − − − − − − − − − − − −− on R. Therefore, in particular it is continuous
on ——————-. Now f(−2) is —————– and f(0) is —————-. Therefore, by
Intermediate Value Theorem, f has a root in ——————–. Also, ——————– is
positive. Therefore, f has a ——————– in (0, 2).

(24) Consider the function f(x) = x3−15x+1. Show that this function has roots in (−4, 3), (1, 2)
and (3, 4).

(25) Show that the above function, remains positive for all x > 4 and remains negative for all
x < −4.

(26) Fill in the blanks by choosing correct alternative from: (cannot be, need not be, may be,
must be)
Let f : [a, b] −→ R be a continuous function. Then {f(x) : x ∈ [a, b]} ——————–
an interval, but ——————– equal to [f(a), f(b)]. Further, if {f(x) : x ∈ [a, b]} is
not an interval, then f : [a, b] −→ R——————– a continuous function. Finally, if
{f(x) : x ∈ [a, b]} is an interval, then f : [a, b] −→ R may or——————– a continuous
function.

(27) State true or false. If the given statement is false, justify it by giving a counter example.

(i) If f is differentiable at p, then f is continuous at p.

(ii) If f is not differentiable at p, then f is not continuous at p.

(iii) If f is not continuous at p, then f is not differentiable at p.

(iv) If f is continuous at p, then f is differentiable at p.

(28) Give an example of a function, other than the modulus function, which is continuous but
not differentiable on an interval.

xxxxxxxxxxxx

3.3 Practical 1.3: Properties of Differentiable Functions, Dif-
ferentiability of: Inverse functions, Composite functions,
Implicit functions

3.3.1 Prerequisite of Practical 1.3

(1) Let D ⊆ R and c ∈ D be an interior point of D. A function f : D −→ R is said to be

differentiable at c if the limit lim
h−→0

f(c+ h)− f(c)

h
, that is, lim

x−→c

f(x)− f(c)

x− c
exists.
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In this case, the value of the limit is denoted by f ′(c) and is called the derivative of f at c.

If every point of D is an interior point of D and f is differentiable at every point of D,
then f is said to be differentiable on D.
If f is differentiable on D, we obtain a new function from D to R whose value at c ∈ D is
f ′(c). This function is denoted by f ′ and is called the derivative of f.

Other notations:
df

dx
or

dy

dx
if y = f(x).

f ′(c) is denoted by
df

dx

∣∣∣∣
x=c

or
dy

dx

∣∣∣∣
x=c

(2) Geometric interpretation of derivative of a function at a point c :
The given function is differentiable at c if the graph of the function has a unique non-
vertical tangent at c.

(3) Let D ⊆ R and let c be an interior point of D. If f : D −→ R is differentiable at c then f
is continuous at c. Converse not true.

(4) Some differentiable functions.

(i) If f : R −→ R is a constant function, then f ′(c) = 0 for each c ∈ R.
That is if f is a constant function then f ′ is identically 0.

Consider f : (−∞, 1) ∪ (1,∞) −→ R, f(x) =

{
2 if x ∈ (−∞, 1),

3 if x ∈ (1,∞).
We can check the following:
(a) f is not a constant function.
(b) f is differentiable on R \ {1}.
(c) f ′(c) = 0 for all c ∈ R \ {1}.
(d) So, f is a non-constant function having f ′(c) = 0 for all c ∈ (−∞, 1) ∪ (1,∞).

(ii) f : R −→ R, f(x) = 1 for all x ∈ R. Then f is differentiable on R and f ′(x) = 1 for
all x ∈ R.

(iii) f : R −→ R, f(x) = |x| for all x ∈ R. Then f is differentiable at c ∈ R \ {0}.

(iv) f : R −→ R, f(x) = x
2
3 or all x ∈ R. Then f is differentiable at c ∈ R \ {0}.

(5) Left (hand) derivative : Let D ⊆ R and c ∈ D be such that (c − r, c] ⊆ D for some

r > 0. Also let f : D −→ R be a function. If the left limit lim
x−→c−

f(x)− f(c)

x− c
exists, then

it is called the left (hand ) derivative of f at c and is denoted by f ′−(c).

(6) Right (hand) derivative : Let D ⊆ R and c ∈ D be such that [c, c + r) ⊆ D for some

r > 0. Also let F : D −→ R be a function. If the right limit lim
x−→c+

f(x)− f(c)

x− c
exists, then

it is called the right (hand ) derivative of f at c and is denoted by f ′+(c).

(7) If c is an interior point of D, then we can find both, f ′−(c), f ′+(c). It follows from statement
(13) of prerequisite of practical 1.1, that f is differentiable at c if and only if both f ′−(c)
and f ′+(c) exist and are equal.

(8) Some non-differentiable functions.

3.3
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(i) f : R −→ R, f(x) = |x| for all x ∈ R. Then f is not differentiable at x = 0 as both
f ′−(c) and f ′+(c) exist but are not equal.

(ii) f : R −→ R, f(x) = x
2
3 or all x ∈ R. Then f is not differentiable at x = 0 as neither

f ′−(c) nor f ′+(c) exists.

(9) f : [a, b] −→ R is differentiable on [a, b], if f is differentiable at every point of (a, b) and if
f ′+(a) and f ′−(b) exist.

(10) The following statement is very useful to prove a number of basic properties of derivatives.
Caratheodory Lemma: Let D ⊆ R and let c ∈ D be an interior point of D. Then a
function f is differentiable at c if and only if there exists a fnction f1 : D −→ R such that
f(x) − f(c) = (x − c)f1(x)) for all x ∈ D, and f1 is continuous at c. Moreover, if these
conditions hold, then f ′(c) = f1(c).

(11) Algebra of Differentiable Functions: Let D ⊆ R, let c be an interior point of D and
f, g : D −→ R be differentiable at c. Then

(i) f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c),

(ii) rf is differentiable at c and (rf)′(c) = rf ′(c) for every r ∈ R.
(iii) fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

(iv) If f(c) 6= 0 then the function
1

f
is differentiable at c and

(
1

f

)′
(c) = − f ′(c)

(f(c))2

(v) If g(c) 6= 0 then the function
f

g
is differentiable at c and

(
f

g

)′
(c) =

f ′(c)g(c)− f(c)g′(c)

(g(c))2
.

(12) Chain Rule: Let D,E ⊆ R and f : D −→ R, g : E −→ R be functions such that
f(D) ⊆ E. Suppose c ∈ D is such that c is an interior point of D and f(c) is an interior
point of E. If f is differentiable at c and g is differentiable at f(c), then the composite

function g ◦ f is differentiable at c and (g ◦ f)′(c) = g′
(
f(c)

)
· f ′(c).

(13) Differentiability of Inverse Function: Let I ⊆ R, I be an interval and let c ∈ I be
an interior point of I. Suppose f : I −→ R is a one-one and continuous function. Let
f−1 : f(I) −→ I be the inverse function. If f is differentiable at c and f ′(c) 6= 0 then f−1

is differentiable at f(c) and

(f−1)′(f(c)) =
1

f ′(c)
.

(14) Implicit functions: The equations of the form F (x, y) = 0, where F is a real valued
function defined on some subset E of the plane R2, and (x, y) varies over the points of E are
the plane curves C. We say that C is the implicitly defined curve F (x, y) = 0, (x, y) ∈ E.
For example, the circle of radius 5 centered at the origin is the curve x2 + y2 − 25 = 0.
The Chain Rule helps us to find the tangents to implicitly defined curves. Here F (x, y) =
x2 + y2 − 25. To find the tangent at a point (3, 4), we differentiate F (x, y) with respect

to x, treating y as a function of x. Using the Chain Rule, we obtain 2x + 2y
dy

dx
= 0 and

hence

(
dy

dx

)
(3,4)

=

(
−x
y

)
(3,4)

= −3

4
.
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Hence the equation of the tangent to this circle F (x, y) = 0 at the point (3, 4) is given by

the line y − 4 = −3

4
(x− 3), that is 3x+ 4y − 25 = 0.

3.3.2 PRACTICAL 1.3

(A) Objective Questions:

Choose correct alternative in each of the following:

(1) Which of the following functions is differentiable at x = 0?

(a) |x|

(b) f(x) =

{
x sin

(
1
x

)
if x 6= 0,

0 if x = 0.

(c) x
1
3

(d) f(x) =

{
x2 if x ∈ Q,
0 if x /∈ Q.

(2) Which of the following functions is continuous at x = 0 but not differentiable at x = 0?

(a) x−
4
3 .

(b) x−
1
3 .

(c) x
1
3 .

(d) x
4
3 .

(3) Suppose f(x) = x4 + ax2 + bx, (where a, b ∈ R) satisfies the following two conditions,

lim
x−→2

f(x)− f(2)

x− 2
= 4 and lim

x−→1

f(x)− f(1)

x2 − 1
= 9. Then value of b− a is

(a) 55. (b) 88. (c) 66. (d) 77.

(4) Let f(x) =

{
x2 if x ≤ 2,

8− 2x if x > 2.
.

Then f is

(a) continuous but not differentiable at x = 2.

(b) Not continuous at x = 2 but differentiable at x = 2.

(c) Differentiable at x = 2.

(d) Neither continuous nor differentiable at x = 2.

(5) Let f(x) = |x− 2|+ |x− 3|, for all x ∈ R then f ′(2) =

(a) −2. (b) 0. (c) 2. (d) not defined.

(6) f : R −→ R is a differentiable function where the tangent to the graph of f(x) at x = 2 is
y = x+ 1, then

(a) f(2) = 1, f ′(2) = 1.

(b) f(2) = 1, f ′(2) = 0.

(c) f(2) = 3, f ′(2) = 1.

(d) f(2) = 3, f ′(2) = 0.

3.3
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(7) Let f(x) = max{x, x3}, for all x ∈ R then the number of points where f is not differentiable
are

(a) 0. (b) 1. (c) 2. (d) 3.

(8) Consider the following statements.

(i) if f is continuous at a then f is differentiable at a.

(ii) If lim
x−→a

f(x)− f(a)

x− a
exists then f is differentiable at a.

(iii) If lim
x−→a

f(x) exists then f is continuous at a.

(iv) If f is differentiable at a then lim
x−→a

f(x) = f(a)

(a) only (ii) is true.

(b) (ii) and (iii) are true.

(c) (i) and (iii) are true.

(d) (ii), (iii) and (i) are true.

(9) Let f, g : R −→ R be differentiable functions. If h(x) = f(g(x)) and f(−2) = 8, f ′(−2) =
4, f ′(5) = 3, g(5) = −2, g′(5) = 6 then h′(5) =

(a) 12 (b) 24 (c) 8 (d) −16

(10) Let f, g : R −→ R be differentiable functions such that g(x) < 0, for all x ∈ R and
f(0) = 3. If h(x) = f(x) ∗ g(x) and h′(x) = f(x)g′(x) then f(x) =

(a) 3 (b) f ′(x) (c) g(x) (d) ex

(11) If f(u) = sinu and u = g(x) = x2 − 9 then (f ◦ g)′(3) =

(a) 6 (b) 1 (c) 0 (d) 9

(12) If x = t− sin t, y = 1− cos t then
dy

dx
=

(a)
sin t

1− cos t
(b)

1− cos t

sin t
(c)

sin t

1 + cos t
(d)

1− x
y

(13) If x = cos3 θ, y = sin3 θ then
dy

dx
=

(a) tan3 θ (b) tan θ (c) − tan θ (d) cot θ

(14) If x =
1

1− t
, y = 1− ln(1− t) where t < 1 then

dy

dx
=

(a)
1

1− t
. (b)

1

(1− t)3
. (c)

1

x
. (d)

(1− t)2)

t
.

(15) If x2 + 2xy = y2 then
dy

dx
is (assuming y is a function of x)
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(a)
x+ y

x− y
. (b)

x+ y

y − x
. (c) 2x+ 2y. (d)

x+ 1

y
.

(16) If x+ cos(x+ y) = 0 then
dy

dx
is (assuming y is a function of x)

(a)
x

sin(x+ y)
. (b)

1

sin(x+ y)
. (c)

1

sin(x+ y)
− 1. (d)

1− sinx

sin y
.

(17) If h is the inverse function of f and if f(x) =
1

x
then h′(3) =

(a) −9. (b) −1

9
. (c)

1

9
. (d) 9.

(18) Suppose f(x) = 2x3 − 3x and h is the inverse function of f then h′(−1) =

(a) −1. (b)
1

3
. (c) −1

3
. (d) 1.

(19) the derivative of the inverse function of f : [0, 1] −→ R, f(x) = xex at x = 0.5 is

(a)
2

3
√
e
. (b)

3

2
√
e
. (c)

2
√
e

3
. (d) None of these.

(20) Let f, g : R −→ R be differentiable functions. If f and g are inverses of each other and
f ′(2) = 5 and g′(2) =

(a) −5.

(b)
1

5
.

(c) −1

5
.

(d) can not calculate as data is insufficient.

(21) If the equation of a curve is x2y2 = x2 − y2 then the slope of the tangent to the curve at
(1, 1) is .

(a) −5. (b)
1

5
. (c) 0. (d) none of these.

(22) The slope of the normal to the curve y = x3y + 2x2 − y2 at (2,−1) is

(a)
9

4
. (b)

4

9
. (c) 0. (d) none of these.

(B) Descriptive Questions

(1) Let f be a function defined on R by f(x) =

sin

(
1

x

)
if x 6= 0,

0 if x = 0.
.

Answer the following.

(i) Is f continuous at x = 0?

(ii) Is f differentiable at x = 0?

(2) Find the derivative of the following functions using the definition.

3.3
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(i) f(x) = x2, for all x ∈ R
(ii) f(x) = xn, for all x ∈ R where n ∈ N

(iii) f(x) =
1

x
for all x ∈ R \ {0}

(iv) f(x) =
√
x for all x ∈ R

(v) f(x) =
1√
x

for all x ∈ R \ {0}

(vi) f(x) =
x+ 1

2− x
for all x ∈ R \ {2}

(vii) f(x) =
√
x3 − x for all x > 1

(viii) f(x) = sinx for all x ∈ R

(ix) f(x) =

2 +
√
x if x ≥ 1,

x2 +
5

2
if x < 1.

at x = 1.

(3) Check whether the following functions from R −→ R are differentiable at the mentioned
point/domain.

(i) f(x) =

{
0 if x < 0,

x3 if x ≥ 0.
at x = 0.

(ii) f(x) =

{
1 if x < 0,

2x+ 1 if x ≥ 0.
at x = 0.

(iii) f(x) =

{
5x− 1 if x ≤ 3,

6x+ 2 if x > 3.
at x = 3.

(iv) f(x) =

{
2x+ 5 if x < 1,

x3 − 1 if x ≥ 1.
at x = 1.

(v) f(x) =

{
4x+ 1 if x ≤ 2,

x2 + 5 if x > 2.
at x = 2.

(vi) f(x) =

{
4x+ 1 if x ≤ 2,

x2 + 5 if x > 2.
at x = 2.

(vii) f(x) =

{
x2 + x+ 1 if x < 1,

5x4 − 2 if x ≥ 1.
at x =

1.

(viii) f(x) =

{
8x− 5 if x ≤ 2,

3x2 − 4x+ 7 if x > 2.
at

x = 2.

(ix) f(x) =

{
x2 − 3 if x < 1,

3x2 − 4x− 1 if x ≥ 1.
at

x = 1.

(x) f(x) =

{
ex + 3 if x ≤ 0,

sinx+ 4x if x > 0.
at x =

0.

(xi) f(x) =

{
cos
(

1
x

)
if x ≤ 0,

1 if x = 0.
at x = 0.

(xii) f(x) =


x2 − 9

x− 3
if x ≤ 3,

1 if x = 3.
at x = 3.

(xiii) f(x) =

{
x2 + 1 if x < 2,

6x− 4 if x ≥ 2.
at x = 2.

(xiv) f(x) =

{
x2 + x if x ∈ Q,
x if x ∈ R \Q.

at x =

0.

(xv) f(x) =

{
x2 + 1 if x ∈ Q,
2x if x ∈ R \Q.

at x =

0.

(xvi) f(x) =

x sin

(
1

x2

)
if x 6= 0,

0 if x = 0
at

x = 0.

(xvii) f(x) =

{
x−2 sin

(
x3
)

if x 6= 0,

0 if x = 0
at

x = 0.

(xviii) f(x) = |x− 2| at x = 2.

(xix) f(x) = |x− 1|+ |x− 2| at x = 0, 1, 2

(xx) For n > 1, f(x) =

xn sin

(
1

x2

)
if x 6= 0,

0 if x = 0
at x = 0.

(4) Let f : R −→ R be a function which is differentiable at 0 and f(0) = 0.

If lim
h−→0

f(4h) + f(2h) + f(h) + f
(
h
2

)
+ f

(
h
4

)
+ · · ·

h
= 64 then find f ′(0).

(5) Let f : R+ −→ R be a function which satisfies f(xy) = f(x) + f(y) for all x, y ∈ R+. If
f ′(1) = 0, find a solution for f(x).
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(6) Prove that if f : R −→ R is an even function and has a derivative at every point, then
the derivative f ′ is an odd function. Also prove that if g : R −→ R is a differentiable odd
function then g′ is an even function.

(7) Suppose |f(x)| ≤ x2 for −1 ≤ x ≤ 1. Show that f is differentiable at x = 0 and find f ′(0).

(8) Let g : R −→ R be a bounded function and f(x) = x2 ∗ g(x) for all x ∈ R. Show that f is
differentiable at x = 0.

(9) f : R −→ R be a continuous function. Define F (x) =


f(x) sin2 x

x
if x 6= 0,

0 if x = 0.

Find F ′(0).

(10) The function f(x) =

{
ex if x ≤ 1,

mx+ b if x > 1.
is differentiable at x = 1. Find the values for

the constants m and b.

(11) Suppose u and v are functions of x that are differentiable at x = 0. If u(0) = 5, u′(0) =
−3, v(0) = −1, v′(0) = 2, find the values of the following derivatives at x = 0.

(i)
d

dx
(uv) (ii)

d

dx

(u
v

)
(iii)

d

dx

(v
u

)
(iv)

d

dx
(7v − 2u)

(12) Suppose that f and g are differentiable functions such that f(g()) = x and f ′(x) =

1 + (f(x))2. Show that g′(x) =
1

1 + x2
.

(13) Let f, g : R −→ R be functions such that f ′(x) = g(x) and g′(x) = f(x) for all x ∈ R.
Prove that f2 − g2 must be a constant function.

(14) If f, g, h and φ are differentiable functions, then state the derivative of f◦g(x), ((f◦g)◦h)(x)
and (f ◦ g ◦ h ◦ φ)(x).

(15) Express each of the following functions in the form of (f ◦ g ◦ h)(x), by clearly stating the
functions f, g, h. Hence write the derivative of each.

(i) sin(cos(ex)) (ii)
√

sin(x2) (iii) etan−1(3x+2)

(16) If −1 ≤ x ≤ 1, then prove that the derivative of Evaluate
df

dx
at x =

1

2
and

df−1

dy
at

y = f

(
1

2

)
and show that at these points.

df−1

dy
=

1

df

dx

where f(x) = sin−1x,−1 ≤ x ≤

1,−π
2
≤ y ≤ π

2
.

(17) Find
dy

dx
in the following examples where y is a function of x.

(i) sin y + x2y3 − cosx = 2y

(ii) 3xy2 + cos y2 = 2x3 + 5

(iii) 5x2 − x3 sin y + 5xy = 10

(iv) tan 5y − y sinx+ 3xy2 = 9
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(v) xex
2+y2 = 5

(vi) x3 + y3 = 3axy

(vii) x2y2 = x2 − y2

(viii) cosx2 = xey

(ix) y3 + y2x+ 4x2 = 6

(x) x− cosx2 +
y2

x
+ 3x5 = 4x3

(xi) 4x2 + sinx ∗ y4 = 3y

(xii) exy = ecos y

(xiii) x
2
3 + y

2
3 = a

2
3

(xiv) ex + ey = x+ y

(xv) y cosx = 1 + sinxy

(xvi) xy = x sin y = 4

(18) If sec

(
x+ y

x− y

)
= a, show that

dy

dx
=
y

x

(19) If sin−1

(
x2 − y2

x2 + y2

)
= ln a, show that

dy

dx
=
y

x

(20) If x4y5 = (x+ y)9, show that
dy

dx
=
y

x

(21) If xpyq = (x+ y)p+q, show that
dy

dx
=
y

x

(22) If y = x sin y, show that
dy

dx
=

y

x(1− x cos y)

(23) Find the equation of the tangent to the curve x3 + y3 = 6xy at the point (3, 3)

(24) Find
dy

dx
if cos(x+ y) = y2 sinx

(25) Show that every curve in the family xy = c, c 6= 0 is orthogonal to every curve in the
family x2 − y2 = k, k 6= 0.

xxxxxxxxxxxxxx

3.4 Practical 1.4: Higher Order Derivatives, Leibniz Theorem

3.4.1 Prerequisite of Practical 1.4

(1) Let I ⊆ R be an open interval and c ∈ I. Suppose the function f : I −→ R is differentiable
at every point of I. Then the derivative function f ′ is defined on I. In case f ′ is differen-
tiable at c, then we say that f is twice differentiable at c and denote the derivative of
f ′ at c by f ′′(c). The quantity f ′′(c) is called the second derivative or second -order
derivative of f at c. (note that when we are finding f ′′(c) we need f ′(c+ h), that is, we
need differentiability of f at c+ h also.)
If f ′ is differentiable at every point in I, then the second derivative function f ′′ is defined
on I. If f ′′ is also differentiable at c, then we say that f is thrice differentiable or
third -order derivative at c and denote the derivative of f ′′ at c by f ′′′(c). Similarly, we
can define n− times differentiability of f and the nth derivative or nth -order derivative

f (n)(c) for every n ∈ N. The notations
d2f

dx2

∣∣∣
x=c

,
d3f

dx3

∣∣∣
x=c

, and
dnf

dxn

∣∣∣
x=c

are sometimes used
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instead of f ′′(c), f ′′′(c), and f (n)(c), respectively.
If f is n−times differentiable at c for every n ∈ N, then f is said to be infinitely differ-
entiable at c.

(2) a, b ∈ R,m, n ∈ N

(i) If y = (ax+ b)m, then

yn =

{
mPna

n(ax+ b)m−n ∀ n ≤ m
0 ∀ n > m

.

(ii) If y =
1

ax+ b
then

yn =
(−1)nn!an

(ax+ b)n+1
∀ n ∈ N.

(iii) If y = ln(ax+ b) then

yn =
(−1)n−1(n− 1)!an

(ax+ b)n
∀ n ∈ N.

(iv) If y = sin(ax+ b) then

yn = an sin
(
ax+ b+ n · π

2

)
∀ n ∈ N.

(v) If y = cos(ax+ b) then
yn = an cos(ax+ b+ n · π2 ) ∀ n ∈ N.

(vi) If y = emx, then yn = mnemx ∀ n ∈ N.

(vii) If y = amx, a > 0 then
yn = mnamx(ln a)n, ∀ n ∈ N.

(3) Leibniz Rule : Let I ⊆ R be an open interval and f, g : I −→ R be functions. If
f, g are n−times differentiable on I then the product function f · g : I −→ R given by
(f · g)(x) = f(x) · g(x), for all x ∈ I is also n−times differentiable on I and the nth order
derivative of the product f · g at c ∈ I is given by:
(f · g)(n)(c) = nC0f

(n)(c)g(0)(c) + nC1f
(n−1)(c)g(1)(c) + · · ·+ nCrf

(n−r)(c)g(r)(c)
+ · · ·+ nCnf

(0)(c)g(n)(c)
where f (0)(c) = f(c), g(0)(c) = g(c).

(A) Objective Questions:

Choose correct alternative in each of the following:

(1) If y = (2x+ 13)20 then y15 at c = 0 is

(a)
20!

5! ∗ 15!
215 ∗ 13 (b)

20!

5!
215 ∗ 135 (c)

20!

5!
215 ∗ 1315 (d) None of these.

(2) If y =
1

3x− 5
for all x 6= 5

3
then y8 is

(a)
−8!38

(3x− 5)8
(b)

8!38

(3x− 5)9
(c)

−8!38

(3x− 5)9
(d) None of these.

(3) If y = ln(6− 5x) for all x <
6

5
then y7 is

(a)
6!56

(6− 5x)8
(b)

−6!56

(6− 5x)8
(c)

−6!56

(6− 5x)9
(d) None of these.

(4) If y = sin(3x+ 5) then y16 is

(a) 316 cos(3x+ 5) (b) 316 sin(3x+ 5) (c) 315 sin(3x+ 5) (d) None of these

(5) If y = cos(2x+
5π

2
) then y13 is

3.4
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(a) 213 cos(2x) (b) −213 cos(2x) (c) 213 sin(2x) (d) None of these

(6) If y = 49x then y33 at c = 0 is

(a) 93349 (b) 93349 (c) 93249 (d) None of these

(7) If y = 32x then y15 is

(a) 21432x ln 3 (b) 21532x ln 3 (c) 21532x−1 ln 3 (d) None of these.

(8) If y = e−mx then

(a) yn+1 + (m +
1)yn = 0

(b) yn+1 +myn = 0 (c) yn+1 + (m −
1)yn = 0

(d) none of these.

(9) If y = sin(m sin−1 x) then

(a) (1− x2)y2 − 2xy1 +m2y = 0

(b) (1− x2)y2 − xy1 +m2y = 0

(c) (1− x2)y2 + xy1 +m2y = 0

(d) None of these

(10) If y = cosx2 then third order derivative y3 =

(a) 8x3 sinx2 − 12x cosx2

(b) 4x cosx2 − 8x3 sinx2

(c) 8x3 sinx2 − 4x cosx2

(d) 12x cosx2 − 8x3 sinx2

(B) Descriptive Questions

(1) Given y =
1

x
+ cos 2x, find

d5y

dx5
.

(2) Using the nth order derivatives of standard functions, find the nth order derivatives of the
following functions.

(i) sin2 x

(ii)
1

1− 5 + 6x2

(iii) sin 6x cos 4x

(iv) sin2 x cos3 x

(v) x lnx

(3) Use Leibniz Rule to prove the following: (yn denotes the nth order derivative of y)

(i) If y = sin ax+ cos ax (where a ∈ R) then yn = an[1 + (−1)n sin 2ax]
1
2 .

(ii) If y = e−mx then yn+1 +myn = 0.

(iii) If y = emx + e−mx then yn+2 +m2yn = 0.

(iv) If y = x3ex then

(a) y3 − 3y2 + 3y1 − y = 6ex

(b) yn+3 − 3yn+2 + 3yn+1 − y = 6ex.
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(v) If y = a cos(lnx) + b sin(lnx) then,

(a) x2y2 + xy1 + y = 0

(b) x2yn+2 + (2n+ 1)xyn+1 + (n2 + 1)yn = 0.

(vi) If y = ln(x+
√

1 + x2) then,

(a) (1 + x2)y2 + xy1 = 0

(b) (1 + x2)yn+2 + (2n+ 1)xyn+1 + n2yn = 0.

(vii) If y = em cos−1 x then

(a) (1− x2)y2 − xy1 = m2y.

(b) (1− x2)yn+2 − (2n+ 1)xyn+1 = (m2 + n2)yn.

(viii) If y = sin(m sin−1 x) then

(a) (1− x2)y2 − xy1 +m2y = 0

(b) (1− x2)yn+2 − (2n+ 1)xyn+1 + (n2 −m2)yn = 0.

(ix) If y = tan−1 x, 0 < x <
π

2
, then

(a) (1 + x2)y2 + 2xy1 = 0.

(b) (1 + x2)yn+2 + 2x(n+ 1)yn+1 + n(n+ 1)yn = 0,∀n ∈ N.

Also find yn(0).

(x) If y = cos(m sin−1 x) then (1− x2)yn+2 − (2n+ 1)xyn+1 + (n2 −m2)yn = 0.

(xi) If y = (sin−1 x)2 then (1− x2)yn+2 − (2n+ 1)xyn+1 − n2yn = 0.

xxxxxxxxxxxx

3.5 Practical 1.5: Mean value theorems and applications,
L’Hospital’s Rule, Increasing and Decreasing functions.

3.5.1 Prerequisite for Practical 1.5

(1) Rolle’s Theorem: If f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b) and
if, f(a) = f(b), then there is c ∈ (a, b) such that f ′(c) = 0.

(2) Lagrange’s Mean Value Theorem: If f : [a, b] → R is continuous on [a, b] and differ-

entiable on (a, b) then there is c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

(b− a)
.

(3) Cauchy’s Mean Value Theorem: If f, g : [a, b] → R are continuous on [a, b] and
differentiable on (a, b), then there is c ∈ (a, b) such that g′(c)[f(b) − f(a)] = f ′(c)[g(b) −
g(a)].

(4) Monotonically increasing function: Let I be an interval in R and f : I −→ R be a
function. f is said to be (monotonically) increasing on I if x1, x2 ∈ I, x1 < x2 ⇒ f(x1) ≤
f(x2).
Monotonically decreasing function: Let I be an interval in R and f : I −→ R be a
function. f is said to be (monotonically) increasing on I if x1, x2 ∈ I, x1 < x2 ⇒ f(x1) ≥

3.5
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f(x2).
Monotonic function: Let I be an interval in R and f : I −→ R be a function.f is said to
be monotonic on I if f is monotonically increasing on I or f is monotonically decreasing
on I.
Strictly increasing: Let I be an interval in R and f : I −→ R be a function. f is said
to be strictly increasing on I if x1, x2 ∈ I, x1 < x2 ⇒ f(x1) < f(x2).
Strictly decreasing: Let I be an interval in R and f : I −→ R be a function. f is said
to be strictly decreasing on I if x1, x2 ∈ I, x1 < x2 ⇒ f(x1) > f(x2).

(5) Let I be an interval containing more than one point, and f : I −→ R be a differentiable
function Then we have the following:
(i) f ′ ≥ 0 throughout I ⇐⇒ f is monotonically increasing on I.
(ii)f ′ ≤ 0 throughout I ⇐⇒ f is monotonically decreasing on I.
(iii)f ′ > 0 throughout I =⇒ f is strictly increasing on I.
(iv)f ′ < 0 throughout I =⇒ f is strictly decreasing on I.

(6) L’Hôpital’s Rule

(i) L’Hôpital’s Rule for
0

0
Indeterminate Form when x −→ c, c ∈ R:

Let c ∈ R and D = (c − r, c) ∪ (c, c + r) for some r > 0. Let f, g : D −→ R be
differentiable functions such that

lim
x−→c

f(x) = 0 and lim
x−→c

g(x) = 0.

Suppose g′(x) 6= 0 for all x ∈ D, and lim
x−→c

f ′(x)

g′(x)
= l . Then lim

x−→c

f(x)

g(x)
= l . Here l

can be a real number or ∞ or −∞.

(ii) L’Hôpital’s Rule for
0

0
Indeterminate Forms when x −→∞:

Let a ∈ R and let f, g : (a,∞) −→ R be differentiable functions such that

lim
x−→∞

f(x) = 0 and lim
x−→∞

g(x) = 0.

Suppose g′(x) 6= 0 for all x ∈ (a,∞), and lim
x−→∞

f ′(x)

g′(x)
= l . Then lim

x−→∞

f(x)

g(x)
= l .

Here l can be a real number or ∞ or −∞.

(iii) L’Hôpital’s Rule for
0

0
Indeterminate Forms when x −→ −∞:

Let a ∈ R and let f, g : (−∞, a) −→ R be differentiable functions such that

lim
x−→−∞

f(x) = 0 and lim
x−→−∞

g(x) = 0.

Suppose g′(x) 6= 0 for all x ∈ (−∞, a), and lim
x−→−∞

f ′(x)

g′(x)
= l . Then lim

x−→−∞

f(x)

g(x)
= l .

Here l can be a real number or ∞ or −∞.
(iv) L’Hôpital’s Rule for

∞
∞

Indeterminate Forms when x −→ c, c ∈ R:

Let c ∈ R and D = (c − r, c) ∪ (c, c + r) for some r > 0. Let f, g : D −→ R be
differentiable functions such that

|g(x)| −→ ∞ as x −→ c.
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Suppose g′(x) 6= 0 for all x ∈ D, and lim
x−→c

f ′(x)

g′(x)
= l . Then lim

x−→c

f(x)

g(x)
= l . Here l

can be a real number or ∞ or −∞.
(v) L’Hôpital’s Rule for

∞
∞

Indeterminate Forms when x −→∞:

Let a ∈ R and let f, g : (a,∞) −→ R be differentiable functions such that

|g(x)| −→ ∞ as x −→∞.

Suppose g′(x) 6= 0 for all x ∈ (a,∞), and lim
x−→∞

f ′(x)

g′(x)
= l . Then lim

x−→∞

f(x)

g(x)
= l .

Here l can be a real number or ∞ or −∞.
(vi) L’Hôpital’s Rule for

∞
∞

Indeterminate Forms when x −→ −∞:

Let a ∈ R and let f, g : (−∞, a) −→ R be differentiable functions such that

|g(x)| −→ ∞ as x −→ −∞.

Suppose g′(x) 6= 0 for all x ∈ (−∞, a), and lim
x−→−∞

f ′(x)

g′(x)
= l . Then lim

x−→−∞

f(x)

g(x)
= l .

Here l can be a real number or ∞ or −∞.

3.5.2 PRACTICAL 1.5

(A) Objective Questions:

Choose correct alternative in each of the following:

(1) Which of the following functions is increasing on the interval
(
−π

2
,
π

2

)
?

(a) f(x) = x2 (b) f(x) = cosx (c) f(x) = sinx (d) f(x) = |x|

(2) Which of the following functions is decreasing on the interval (0, π)?

(a) f(x) = x2 (b) f(x) = cosx (c) f(x) = sinx (d) f(x) = cotx

(3) The function y = x2 is increasing on

(a) R (b) (−∞, 0) (c) (0,∞) (d) None of these.

(4) The function y = x3 − 6x2 + 9x− 3 is decreasing on

(a) (1,3) (b) R (c) (0,∞) (d) None of these.

(5) The function y = 5− 3x2 + x3 is increasing on

(a) (−∞, 2) ∪ (2,∞)

(b) (0, 2)

(c) R
(d) None of these.

(6) The function y = x lnx is decreasing on

3.5
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(a)
(
0, 1

e

)
(b)

(
1
e ,∞

)
(c) R (d) None of these.

(7) lim
x→∞

x sin
1

x
=

(a) 0 (b) 1 (c) ∞ (d) None of these.

(8) lim
x→0

xx =

(a) 1 (b) 0 (c) ∞ (d) None of these.

(9) lim
x→0

(
ln(1− x2)

ln(cosx)

)
=

(a) 2 (b) 1 (c) 0 (d) None of these.

(10) lim
x→a

(x− a)x−a =

(a) 1 (b) 0 (c) a (d) None of these.

(11) lim
x−→o

x ln tanx =

(a) 0 (b) 1 (c) ∞ (d) None of these.

(12) Let f : [a, b] −→ R be a function such that f is continuous on [a, b], differentiable on (a, b)
and f(a) = f(b). Then

(a) there exists a unique c ∈ (a, b) such that f ′(c) = 0.

(b) there exists c ∈ (a, b) such that f(c) = 0.

(c) there exists c ∈ (a, b) such that f ′(c) = 0.

(d) None of these.

(13) Let f : [a, b] −→ R be a function such that f is continuous on [a, b] and differentiable on
(a, b). Then

(a) there exists a unique c ∈ (a, b) such that f ′(c)f(b)−f(c)
b−a .

(b) there exists c ∈ (a, b) such that f(c) = f(b)−f(a)
b−a .

(c) there exists c ∈ (a, b) such that f(c) = f(b)−f(a)
b−a .

(d) none of these.

(14) Let a and b be such that 0 < a < b < π
2 . Then, there exists c between a and b such that
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(a) sin a−sin b
cos b−cos a = − cot c.

(b) sin a−sin b
cos b−cos a = tan c.

(c) sin a−sin b
cos b−cos a = cot c.

(d) None of these. exertion

(B) Descriptive Questions

(1) Examine the applicability of Rolle’s theorem for the following functions:

(i) f(x) = x4, x ∈ [−2, 2]

(ii) f(x) = sinx+ cosx− 6, x ∈ [0, 2π]

(iii) f(x) =
√

1− x2, x ∈ [−1, 1]

(iv) f(x) = sinx− 1, x ∈
[
pi
2 ,

5π
2

]
(v) f(x) = (x+ 1)(x− 2)2, x ∈ [1, 2]

(vi) f(x) = x2 − 5x+ 9, x ∈ [1, 4]

(vii) f(x) = sin 3x, x ∈ [0, π]

(viii) f(x) = cos 2x, x ∈ [o, π]

(ix) f(x) = (x− 1)(2x− 3), x ∈ [1, 3]

(x) f(x) = 2 + (x− 1)
2
3 , x ∈ [0, 2]

(xi) f(x) = |x|, x ∈ [−1, 1]

(xii) f(x) = x3 − 3x2 + 2x+ 2, x ∈ [0, 1]

(2) Consider f : [0, 1] −→ R, f(x) =

{
x if 0 ≤ x < 1,

0 if x = 1.
Answer the following questions.

(i) Is f differentiable on (0, 1)? If yes, find f ′(x) for all x ∈ (0, 1).

(ii) Is f(0) = f(1)?

(iii) Does there exist c ∈ (0, 1) such that f ′(c) = 0?

(iv) If your answer to the above question is no, then which condition of Rolle’s theorem is
not satisfied? Mention the point at which the one of the Rolle’s Theorem’s condition
is not satisfied.

(3) Consider f : [−1, 1] −→ R, f(x) = |x|.

Answer the following questions.

(i) Is f continuous on [−1, 1]?

(ii) Is f(−1) = f(1)?

(iii) What is f ′(x) for −1 < x < 0?

(iv) What is f ′(x) for 0 < x < 1?

(v) Does there exist c ∈ (−1, 1) such that f ′(c) = 0?

(vi) If your answer to the above question is no, then which condition of Rolle’s theorem is
not satisfied? Mention the point at which the one of the Rolle’s Theorem’s condition
is not satisfied.

(4) Consider f : [0, 1] −→ R, f(x) = x.
Answer the following questions.

(i) Is f continuous on [0, 1]?

(ii) Is f differentiable on (0, 1)?

3.5
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(iii) What is f ′(x) for 0 < x < 1?

(iv) Does there exist c ∈ (0, 1) such that f ′(c) = 0?

(v) If your answer to the above question is no, then which condition of Rolle’s theorem
is not satisfied?

(5) Show that the following polynomial functions have exactly one root.

(i) x3 + 4x+ 1 = 0

(ii) x3 + 4x− 3 = 0

(iii) 4x5 + x3 + 2x+ 1

(iv) 2x− 1− sinx = 0

(6) Show that the equation x3 − 15x+ c = 0 has at most one root in the interval [−2, 2].

(7) At what points on the curve y = cosx− 1 on [0, π] is the tangent parallel to x− axis.

(8) Examine the applicability of Lagrange’s Mean Value Theorem for the following functions.

(i) f(x) = x(2− x) in [0, 1].

(ii) f(x) = x(x+ 4)2 in [0, 4].

(iii) f(x) = x+
1

x
in [1, 3].

(iv) f(x) = x(x− 2) in [0, 1].

(v) f(x) =
√
x2 − 4 in [2, 4].

(vi) f(x) =
1

4x− 1
in [1, 4].

(vii) f(x) = x2 − 3x− 1 in [−
[

11
7 ,

13
7

]
.

(viii) f(x) = ex in [0, 1].

(ix) f(x) = x(x+ 4)2 in [0, 4].

(x) f(x) =


1

x
if x 6= 0

0 if x = 0
.

(9) Use LMVT to prove the following.

(i) | sinx− sin y| ≤ |x−y|, for all x, y ∈ R. (ii) | cosx−cos y| ≤ |x−y|, for all x, y ∈ R.

(10) State the intervals on which f is increasing or decreasing.

(i) f(x) = 5− 3x2 + x3

(ii) f(x) = 3− 2x2 + x4

(iii) f(x) = 91 + 9x− 6x2 + x3

(iv) f(x) = 71 + 18x− 12x2 + 2x3

(v) f(x) = x− 2 sinx, 0 < x < 3π

(vi) f(x) = cos2 x− 2 sinx, 0 ≤ x ≤ 2π

(vii) f(x) = xex

(viii) f(x) = x4 + 6x3 + 17x2 + 32x+ 32

(11) Show that the following functions are either increasing or decreasing for all real values of
x.

(i) f(x) = 10− 12x− 3x2 − x3

(ii) f(x) = x3 − 9x2 + 30x+ 13

(iii) f(x) = 4− e5x

(iv) f(x) =
1− 2x− x2

1 + x− 2x2

(12) Show that tanx > x if 0 < x < π
2

(13) Show that −x
2

2
< ln(1 + x) < x− x2

2(1 + x)
, for each x > 0.
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(14) Show that 1 + x < ex < 1 + xex, for all x ≥ 0.

(15) Show that
x

1 + x
< ln(1 + x) < x, for all x > 0, hence show that 0 <

1

ln(1 + x)
− 1

x
< 1,

for all x > 0.

(16) Show that
tanx

x
>

x

sinx
, for 0 < x <

π

2
.

(17) Show that x2 − 1 > 2x lnx > 4(x− 1)− 2 lnx, for all x ∈ (1,∞).

(18) Find c of Cauchy’s Mean Value Theorem.

(i) f(x) = x(x− 2)(x− 3) and g(x) = x(x− 1)(x− 2), x ∈
[
0,

1

2

]
.

(ii) f(x) = cosx, g(x) = sinx, x ∈
[
−π

2
, 0
]
.

(19) Using L’Hôpital’s Rule, evaluate the following limits.

(i) lim
x−→0

x2 + 2 cosx− 2

x sin3 x

(ii) lim
x−→0

1 + sinx− cosx+ ln(1− x)

x tan2 x

(iii) lim
x−→0

ln sinx

cot x

(iv) lim
x−→π

2

tan 2x

tanx

(v) lim
x−→0

x lnx

(vi) lim
x−→0

1

x2
− 1

sin2 x

(vii) lim
x−→0

xx

(viii) lim
x−→π

2

(sec x)cot x

(ix) lim
x−→0

(
tanx

x

) 1
x2

(x) lim
x−→1

x1−x

(20) Let f, g and h be continuous on [a, b] and differentiable on (a, b), then show that there

exists a point c ∈ (a, b) such that
f(a) f(b) f ′(c)
g(a) g(b) g′(c)
h(a) h(b) h′(c)

= 0. (Hint: Consider the function

k : [a, b] −→ R as k(t) =
f(a) f(b) f(t)
g(a) g(b) g(t)
h(a) h(b) h(t)

. Check if you can apply LMVT and proceed

accordingly.)

(21) If f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4. Determine how small can f(4) become?

(22) Let f : R −→ R be a differentiable function. If f ′ is continuous, use L’Hôpital’s Rule to

show that lim
h−→o

f(x+ h)− f(x− h)

2h
= f ′(x).

(23) Evaluate the following limits.

(i) lim
x→1

1 + log x− x
1− 2x+ x2

(ii) lim
x→0

sinhx− x
sinx− x cosx

(iii) lim
x→0

log (1− x2)

log cosx

(iv) lim
x→0

xex − log(1 + x)

x2

3.5
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(v) lim
x→0

ex sinx− x− x2

x2 + x log(1− x)

(vi) lim
x→0

sinx− log (ex cosx)

x sinx

(vii) lim
x→0

log (1− x) cot
πx

2

(viii) lim
x→0

tan2 x− x2

x2 tan2 x

(ix) lim
x→π/2

tanx

tan 3x

(x) lim
x→0

x tan(
π

2
− x)

(xi) lim
x→0

(cotx) sin 2x

(xii) lim
x→0

(
2x+ 1

x+ 1
)x−1

(xiii) lim
x→0

(
sinhx

x
)x−2

(xiv) lim
x→π/4

(tanx)tan 2x

(xv) lim
x→0+

(cotx)sinx

(xvi) lim
x→ 1

2

cos2 πx

e2x− 2ex

(xvii) lim
x→0

xex − log(1 + x)

coshx− cosx

(xviii) lim
x→0

aax − e−ax

log (1 + bx)

(xix) lim
x→0

x cosx− log(1 + x)

x2

(xx) lim
x→0

x2 + 2 cosx− 2

x sin3 x

(xxi) lim
x→0

x− log(1 + x)

1− cosx

(xxii) lim
x→0

sin 2x+ 2 sin2 x− 2 sinx

cosx− cos2 x

(xxiii) lim
x→0

log sinx

cotx

(xxiv) lim
x→0

logtanx tan 2x

(xxv) lim
x→0

(
1

x2
− cot2 x)

(xxvi) lim
x→π/2

(sinx)tanx

(xxvii) lim
x→0

(1 + sinx)cotx

(xxviii) lim
x→0

1

xx − 1

(xxix) lim
x→π/2+

(secx)cosx

xxxxxxxxxxx

3.6 Practical 1.6: Extreme values, Taylor’s Theorem and
Curve Sketching.

3.6.1 Prerequisite for Practical 1.5

(1) Taylor’s Theorem: (Lagranges form of remainder) Let n ∈ Z, n ≥ 0, and f : [a, b]→
R be such that f ′, f ′′, · · · , f (n) exist on [a, b]and further, f (n) is continuous on [a, b] and
differentiable on (a, b). Then there is c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b− a) + f ′′(a)
2! (b− a)2 + · · ·+ f (n)(a)

n!
(b− a)n +

f (n+1)(c)

(n+ 1)!
(b− a)(n+1).

(2) Let a ∈ R and I be an interval in R such that a is an interior point of I. Suppose
f : I −→ R is an infinitely differentiable function. The series around the point X given

by
∑
k≥0

f (k)(a)

k!
(x− a)k is called the Taylor series of f around a. In the special case that

a = 0, the Taylor series of f around a is sometimes called the Maclaurin series of f.
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(3) Taylor’s Polynomial of f around a: The polynomial given by

Pn(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n is called the nth Taylor
polynomial of f around a.

(4) Convex: Let I be an interval in R and f : I −→ R be a function. f is convex on I or

concave upward on I if x1, x2, x ∈ I, x1 < x < x2 ⇒ f(x)− f(x1) ≤ f(x2)−f(x1)
x2−x1 (x−x1)

Therefore f is convex on I if x1, x2, x ∈ I, x1 < x < x2 ⇒ f(x) ≤ f(x1)+ f(x2)−f(x1)
x2−x1 (x−x1).

Now if we denote f(x1) + f(x2)−f(x1)
x2−x1 (x− x1) by L(x) then f is convex on I if and only if

x1, x2, x ∈ I, x1 < x < x2 ⇒ f(x) ≤ L(x) i.e. f is convex on I if and only of the graph of
f lies below the line joining any two points on it since L(x) is nothing but the line joining
(x1, f(x1)) and (x2, f(x2)).

(5) Concave: Let I be an interval in R and f : I −→ R be a function. f is concave
on I or concave downward on I if x1, x2, x ∈ I, x1 < x < x2 ⇒ f(x) − f(x1) ≥
f(x2)−f(x1)

x2−x1 (x− x1).
As above we can say that f is concave on I if and only if x1, x2, x ∈ I, x1 < x < x2 ⇒
f(x) ≥ L(x)
i.e. f is convex on I if and only of the graph of f lies above the line joining any two points
on it.

(6) Critical point: Let D ⊆ R and f : D −→ R, a point c ∈ D is called a critical point
of f if c is an interior point of D such that either f is not differentiable at c, or f is
differentiable at c and f ′(c) = 0.

(7) Point of Inflection: Let I be an interval in R and f : I −→ R be a function. Let c be
an interior point of I then c is a point of inflection for f if there is δ > 0 such that f is
convex in (c − δ, c), while f is concave in (c, c + δ), or vice versa, that is, f is concave in
(c− δ, c), while f is convex in (c, c+ δ).

(8) Necessary Condition for a Point of Inflection: Let D ⊆ R, c be an interior point
of D, and f : D → R be a function. Let f be twice differentiable at c. If c is a point of
inflection for f , then f ′′(c) = 0.

(9) Sufficient condition for a Point of Inflection: Let D ⊆ R, c be an interior point of
D, and f : D → R be a function such that f is thrice differentiable at c. If f ′′(c) = 0 and
f3(c) 6= 0, then c is a point of inflection for f.

(10) Let I be an interval containing more than one point, and f : I → R be a twice differentiable
function. Then we have the following
(i) f ′′ ≥ 0 throughout I ←→ f is convex on I
(ii) f ′′ ≤ 0 throughout I ←→ f is concave on I
(iii) f ′′ > 0 throughout I → f is strictly convex on I
(iv) f ′′ < 0 throughout I → f is strictly concave on I.

(11) Local Maximum: If D ⊆ R and c is an interior point in D, then f : D −→ R is said to
have a local maximum at c if there is δ > 0 such that (c− δ, c+ δ) ⊆ D and f(x) ≤ f(c)
for all x ∈ (c− δ, c+ δ).

3.6
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(12) Local Minimum: If D ⊆ R and c is an interior point in D, then f : D −→ R is said to
have a local minimum at c if there is δ > 0 such that (c− δ, c+ δ) ⊆ D and f(x) ≥ f(c)
for all x ∈ (c− δ, c+ δ).

(13) Strict Local Maximum: If D ⊆ R and c is an interior point in D, then f : D −→ R is
said to have a strict local maximum at c if there is δ > 0 such that (c− δ, c+ δ) ⊆ D and
f(x) < f(c) for all x ∈ (c− δ, c+ δ).

(14) Strict Local Minimum: If D ⊆ R and c is an interior point in D, then f : D −→ R is
said to have a strict local minimum at c if there is δ > 0 such that (c− δ, c+ δ) ⊆ D and
f(x) > f(c) for all x ∈ (c− δ, c+ δ).

(15) Necessary condition for f to have a local extremum at an interior point c of
D ⊆ R :
Let D ⊆ R and c be an interior point of D. If f : D −→ R is differentiable at c and has a
local extermum at c, then f ′(c) = 0.

(16) First Derivative Test for Local Minimum Let D ⊆ R, c be an interior point of D,
and f : D −→ R be any function. If :

(i) f is continuous at c, and also,

(ii) f is differentiable on (c− r, c)
⋃

(c, c+ r) for some r > 0, and

(iii) there is δ > 0 with δ ≤ r such that f ′(x) ≤ 0 for all x ∈ (c− δ, c) and f ′(x) ≥ 0 for
all x ∈ (c, c+ δ)

then f has a local minimum at c.

(17) Second Derivative Test for Local Minimum: If f : (a, b) −→ R is twice differentiable
at c ∈ (a, b) and satisfies f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

(18) First Derivative Test for Local Maximum Let D ⊆ R, c be an interior point of D,
and f : D −→ R be any function. If:

(i) f is continuous at c, and also,

(ii) f is differentiable on (c− r, c)
⋃

(c, c+ r) for some r > 0, and

(iii) there is δ > 0 with δ ≤ r such that f ′(x) ≥ 0 ∀x ∈ (c − δ, c) and f ′(x) ≤ 0 ∀x ∈
(c, c+ δ)

then f has a local maximum at c.

(19) Second Derivative Test for Local Maximum: If f : (a, b) −→ R is twice differentiable
at c ∈ (a, b) and satisfies f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

(A) Objective Questions

Choose correct alternative in each of the following:

(1) f(x) = x
4
3 − 4x

1
3 . Then has critical points at
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(a) x = 1 is the only critical point of f.

(b) x = 0 is the only critical point of f .

(c) x = 0, 1 both are critical points of f .

(d) None of these.

(2) The function y = x2+1
x attains its maximum value at

(a) 1 (b) -1 (c) 0 (d) None of these

(3) The function y = sinx, x ∈ R attains its minimum value

(a) at exactly one point

(b) at only finitely many points

(c) at infinitely many points

(d) nowhere

(4) For a given function, y = f(x), it is found that f ′(c) = 0. Therefore,

(a) c must be a point of local maximum of
f .

(b) c must be a point of local minimum of
f .

(c) c must be a point of either local maxi-
mum or local minimum of f .

(d) nothing can be said about c.

(5) Amongst the following, the function having a local minimum at the origin, is

(a) y = sinx

(b) y = x3

(c) y = |x|
(d) y = x2 − 2x+ 1

(6) Amongst the following, the function having a local maximum at the origin, is

(a) y = cosx

(b) y = x2

(c) y = |x|
(d) y = x2 + 2x+ 1

(7) The function y = sinx+ cosx, x ∈ (−π2 ,
π
2 ) has local maximum at

(a) π
4

(b) −π4

(c) 0

(d) None of these

(8) A rectangle with the given perimeter has maximum area if and only if it’s a

(a) rhombus

(b) parallelogram

(c) square

(d) kite

(9) A triangle with the given perimeter has maximum area if and only if it is

(a) obtuse angled

(b) isosceles

(c) right angled

(d) equilateral

(10) The function y = ex is concave upwards

3.6
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(a) only at the origin

(b) over negative real numbers only.

(c) over positive real numbers only

(d) everywhere .

(11) Consider the polynomial function f : R −→ R defined by f(x) = x4 +2x3−36x2 +62x+5.
Then f is

(a) convex on (−∞,−3] ∪ [2,∞) and concave on [−3, 2].

(b) convex on (−∞,−2] ∪ [3,∞) and concave on [−2, 3].

(c) convex on [−2,∞) and concave on (−∞,−3].

(d) none of these.

(12) Let n ∈ N and consider the nth power function f : R −→ R defined by f(x) = xn. Which
of the following statement is Not True?

(a) If n is even then f is convex on R.

(b) If n is odd and n > 1 then f is convex on [0,∞) and concave on (−∞, 0] and concave
on [−2, 3].

(c) convex on [−2,∞) and concave on (−∞,−3].

(d) none of these.

(13) The function y = lnx is concave downwards

(a) only at 1

(b) over positive rational numbers only.

(c) over positive irrational numbers only.

(d) wherever it is defined.

(14) The nth Taylor polynomial of sinx around 0 is given by

(a) x− x3

3! + x5

5! − · · ·+
(−1)(k−1)x2k−1

(2k−1)! where n = 2k or n = 2k − 1.

(b) 1− x+ x3

3! −
x5

5! + · · ·+ (−1)(k)x2k−1

(2k−1)! where n = 2k or n = 2k − 1.

(c) 1− x2

2! + x4

4! − · · ·+
(−1)kx2k

(2k)! where n = 2k or n = 2k − 1.

(d) none of these.

(15) The nth Taylor polynomial of cosx around 0 is given by

(a) x− x3

3! + x5

5! − · · ·+
(−1)(k−1)x2k−1

(2k−1)! where n = 2k or n = 2k − 1.

(b) 1− x+ x3

3! −
x5

5! + · · ·+ (−1)(k)x2k−1

(2k−1)! where n = 2k or n = 2k − 1.

(c) 1− x2

2! + x4

4! − · · ·+
(−1)kx2k

(2k)! where n = 2k or n = 2k + 1.

(d) none of these.

(16) The nth Taylor polynomial of f(x) = 1
1−x around 0 is
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(a) 1 + x+ x2 + · · ·+ xn.

(b) 1− x+ x2 + · · ·+ (−1)n ∗ xn.

(c) 1− x+ x2/2 + · · ·+ (−1)n ∗ xn/n.

(d) none of these.

(17) The nth Taylor polynomial of ex around 0 is given by

(a) x− x3

3! + x5

5! − · · ·+
(−1)(n−1)x2n−1

(2n−1)! .

(b) 1 + x+ x2

2! + x3

3! + · · ·+ xn

n! .

(c) 1 + x2

2! + x4

4! − · · ·+
x2n

(2n)! .

(d) none of these.

(B) Descriptive Questions

(1) Find the points of local extrema for the following functions.

(i) f(x) = 5x6 + 18x5 + 15x4 − 10

(ii) f(x) =
(x+ 1)(x+ 4)

(x− 1)(x− 4)
for x 6= 1, 4.

(iii) f(x) = x4 − 8x3 + 22x2 − 24x+ 1

(iv) f(x) =
x3

x4 + 1

(v) f(x) = (x− 1)(x− 2)(x− 3)

(2) Find the local extreme values of the following functions.

(i) f(x) = sin2 x(1 + cosx)3

(ii) f(x) = x4 − 8x3 + 22x2 − 24x+ 1

(iii) f(x) =
x3

x4 + 1
(iv) f(x) = (x− 1)(x− 2)(x− 3)− 24x

(v) f(x) =
lnx

x
(vi) f(x) = x lnx

(vii) f(x) = xx

(viii) f(x) = xe−x

(3) Show that the greatest value of xm(a− x)n is
mmnnam+n

(m+ n)m+n

(4) Divide 100 into the parts such that sum of their squares is minimum.

(5) Show that among all the rectangles with a fixed area, square has the least perimeter.

(6) Show that among all the rectangles with a fixed perimeter , square has the maximum area.

(7) Find the maximum area of a triangle, given that its perimeter is 24 units.

(8) Find the points of inflection.

(i) y = x4 − 6x2 + 8x− 1

(ii) y2 = x(x+ 1)2

(iii) y =
x3

a2 + x2

(iv) y = x3 − 9x2 + 7x− 6

(9) Show that y = ex is concave upwards (convex) for all values of x.

(10) Show that y = lnx is concave downwards (concave) for all values of x.

(11) Prove that the points of inflections of the following curves li on a straight line.

3.6
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(i) y2 = (x− a)2 − (x− b) (ii) x2y + a2(x+ y) = a3

(12) Examine the curve y = cosx for concavity in the interval [−2π, 2π]. Also indicate the
points of inflection.

(13) Find the local maximum and minimum values of f . Also find the intervals of concavity
and the inflection points.

(i) f(x) = x4 − 2x2 + 3

(ii) f(x) = xex

(iii) f(x) = 2x3 − 3x2 − 12x

(iv) f(x) = 2 cosx− cos 2x, 0 ≤ x ≤ 2π.

(v) f(x) =
√
x2 + 1− x

(vi) f(x) = x− 2 sinx, 0 < x < 3π.

(vii) f(x) =
lnx√
x

(viii) f(x) = x4 − 6x2

(14) Show that the function f(x) = sinx, x ∈ (−π, π) has extrema at π
π

2
.

(15) Find the local extremum of f(x) = xx.

(16) Sketch the following curves.

(i) y = x2(x− 1) (ii) y = x3 − x (iii) |x+ y| = 2

(17) write nth Taylor polynomial of coshx and sinhx around 0. (Hint: coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
)

(18) Expand 2 + x2 − 3x5 + 7x6 in powers of (x− 1).

(19) Use Taylor’s theorem to find 4
√

80.7 correct upto 4 decimal places.

(20) Use Taylor’s theorem to find ln 1.2 correct upto 4 decimal places.

(21) Use Taylor’s theorem to find sin 900 correct upto 5 decimal places.

(22) A semicircle of radius 2 units is drawn. A rectangle with base on the diameter of the
semicircle is drawn such that the other two vertices of the rectangle are on the semicircle.
Find the maximum area of such a rectangle. (Observe the sketch for better understanding
of the problem)

(23) Trace the curve of the function f : [0,∞) −→ R, f(x) = x3 − 6x2 + 9x+ 1.

(24) Make a rough sketch of the graph of the function f(x) = x3 − 3x2 + 3.

(25) Sketch the curve y = 3x2 − 2x3 for x ∈ [−1.5, 2].
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(26) Trace the curve f : [0, 2]→ R defined by f(x) = 1 + (x− 1)3.

(27) Trace the curve f : [−3, 3]→ R defined by f(x) = −x3 + 12x+ 5.

xxxxxxxxxxxxxxxx

3.7 Practical 1.7: Miscellaneous theory questions

3.7.1 Practical 1.7: Miscellaneous theory questions from unit I

(1) Let D ⊆ R and let c ∈ R be a limit point of D point of D. Also, let f : D −→ R be a
function. Define limit of f as x tends to c. Prove that if lim

x−→c
f(x) exists then it is unique.

(2) Let D ⊆ R, c ∈ R be a limit point of D and let f : D −→ R be such that lim
x→c

f(x) = L

for some L ∈ R. Then prove that

(i) If L > 0, then there is δ > 0 such that f(x) > 0 for all x ∈ D satisfying 0 < |x−c| < δ.

(ii) If L < 0, then there is δ > 0 such that f(x) < 0 for all x ∈ D satisfying 0 < |x−c| < δ.

(iii) Hence if L 6= 0 then there is δ > 0 such that f(x) 6= 0 for all x ∈ D satisfying
0 < |x− c| < δ.

(3) Let D ⊆ R, c ∈ R be a limit point of D and let f : D −→ R be such that lim
x→c

f(x) = L

for some L ∈ R. Then prove that there exist K, δ > 0 such that

|f(x)| ≤ K for all x ∈ D satisfying 0 < |x− c| < δ.

(4) Let D ⊆ R and let c ∈ R be a limit point of D. If f : D −→ R and lim
x→c

f(x) = L for some

L ∈ R. If there is δ1 > 0, such that

(i) f(x) > 0 for all x ∈ D satisfying 0 < |x− c| < δ1 then prove that L ≥ 0.

(ii) f(x) < 0 for all x ∈ D satisfying 0 < |x− c| < δ1 then prove that L ≤ 0.

(5) Let D ⊆ R and let c ∈ R be a limit point of D. If f, g : D −→ R and L,M ∈ R. Then
prove that

(i) if lim
x→c

f(x) = 0 and there exists K, δ1 > 0 such that |g(x)| ≤ K for all x ∈ D satisfying

0 < |x− c| < δ1 then lim
x→c

f(x)g(x) = 0.

(ii) if f(x) ≤ g(x) for all x ∈ D and lim
x−→p

f(x) = L, lim
x−→p

g(x) = M then L ≤M.

(iii) If lim
x→p

f(x) = L then lim
x→p
|f(x)| = |L|. (Converse not true)

(6) State and prove Sandwich Theorem for limit of a function.

(7) Let D ⊆ R, c ∈ R be a limit point of D ∩ (−∞, c) and let f : D −→ R be a function.
Define left hand limit of f as x tends to c from the left of c.

(8) Let D ⊆ R, c ∈ R be a limit point of D ∩ (c,∞) and let f : D −→ R be a function. Define
right hand limit of f as x tends to c from the right of c.

3.7
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(9) Let D ⊆ R and let c ∈ R be such that c is a limit of D ∩ (−∞, c) as well as of D ∩ (c,∞).
Also, let f : D −→ R be a function. Then prove that
lim
x−→c

f(x) exists ⇐⇒and i lim
x→c−

f(x) and lim
x→c+

f(x) exist and are equal.

In this case, lim
x−→c

f(x) = lim
x→c−

f(x) = lim
x→c+

f(x).

(10) Let D ⊆ R, and let c ∈ R be a limit point of D. Also, let f : D −→ R be a function. Then
f is continuous at c if and only if lim

x−→c
f(x) exists and is equal to f(c).

(11) Algebra of Continuous functions: Let D ⊆ R, c ∈ D and f, g : D −→ R be functions
such that f, g are continuous at c. Then prove that

(i) f + g is continuous at c.

(ii) rf is continuous at c for every r ∈ R.
(iii) fg is continuous at c.

(iv) If g(x) 6= 0 for all x ∈ D then
f

g
: D −→ R is continuous at c.

(12) Let D ⊆ R, c ∈ D and let f : D → R be a function. Then prove that f is continuous at c
if and only if for each sequence (xn) in D converging to c, the sequence (f(xn)) converges
to f(c).

(13) Let D,E ⊆ R, and let f : D −→ R and g : E −→ R be functions such that f(D) ⊆ E. Let
c ∈ D be such that f is continuous at c and g is continuous at f(c). Then prove that the
composite function g ◦ f : D −→ R is continuous at c.

(14) Let D ⊆ R, c ∈ D, f : D −→ R be a function that is continuous at c.. Then prove the
following.

(i) f is bounded in some δ neighbourhood of c. That is, there exists δ,K > 0 such that
|f(x)| ≤ K, for all x ∈ D satisfying |x− c| < δ.

(ii) |f | : D −→ R defined by (|f |)(x) = |f(x)| is also continuous at c. (Converse not true.)

(iii) If f(c) > 0, then there exists δ > 0 such that f(x) > 0 for all x ∈ D satisfying
|x− c| < δ.

(iv) If f(c) < 0, then there exists δ > 0 such that f(x) < 0 for all x ∈ D satisfying
|x− c| < δ.

(15) State and prove intermediate value theorem for a continuous real valued function defined
on R. OR
Let f : [a, b]→ R be a continuous function such that f(a) 6= f(b). For any real number k
between f(a) and f(b), prove that there exist c ∈ (a, b) such that f(c) = k.

(16) State Bolzano-Weierstrass theorem: If a function f : [a, b] → R is continuous then f is
bounded and attains its bounds.

3.7.2 Practical 1.7: Miscellaneous theory questions from unit II

(1) Let D ⊆ R, c ∈ D be an interior point of D. Let f : D −→ R be a function. Define
differentiability of f at c. Also prove that if f is differentiable at c then f is continuous at
c. Is the converse true? Justify your answer.
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(2) (i) Let D ⊆ R and c ∈ D be such that (c− r, c] ⊆ D for some r > 0. Define the left hand
derivative of f at c.

(ii) Let D ⊆ R and c ∈ D be such that [c, c + r) ⊆ D for some r > 0. Define the right
hand derivative of f at c.

(iii) If f : R −→ R, f(x) = |x| for all x ∈ R, find f ′−(0) and f ′+(0). Hence determine
whether f is differentiable at 0 or not. Justify your answer.

Let D ⊆ R, let c be an interior point of D and f, g : D −→ R be differentiable at c. Then

(i) f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c),

(ii) rf is differentiable at c and (rf)′(c) = rf ′(c) for every r ∈ R.
(iii) fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

(iv) If f(c) 6= 0 then the function
1

f
is differentiable at c and

(
1

f

)′
(c) = − f ′(c)

(f(c))2

(v) If g(c) 6= 0 then the function
f

g
is differentiable at c and

(
f

g

)′
(c) = −f

′(c)g(c)− f(c)g′(c)

(g(c))2
.

(3) State and prove the Chain Rule.

OR

Let D,E ⊆ R and f : D −→ R, g : E −→ R be functions such f(D) ⊆ E. Suppose c ∈ D
is an interior point of D such that f(c) is an interior point of E. If f is differentiable at c
and g is differentiable at f(c), then prove that the composite function g ◦f is differentiable

at c and (g ◦ f)′(c) = g′
(
f(c)

)
· f ′(c).

(4) State and prove inverse function theorem.

OR

Let I ⊆ R, I be an interval and let c ∈ I be an interior point of I. Suppose f : I −→ R is
a one-one and continuous function. Let f−1 : f(I) −→ I be the inverse function. If f is
differentiable at c and f ′(c) 6= 0 then f−1 is differentiable at f(c) and

(f−1)′(f(c)) =
1

f ′(c)
.

(5) Let n ∈ N. nth order derivatives of standard functions (yn denote nth ordered derivative
of y)
a, b ∈ R,m, n ∈ N

(i) If y = (ax+ b)m, then

yn =

{
mPna

n(ax+ b)m−n ∀ n ≤ m
0 ∀ n > m

.

(ii) If y =
1

ax+ b
, x 6= −b

a
then

yn =
(−1)nn!an

(ax+ b)n+1
∀ n ∈ N.

(iii) If y = ln(ax+ b), ax+ b > 0 then

yn =
(−1)n−1(n− 1)!an

(ax+ b)n
∀ n ∈ N.

(iv) If y = sin(ax+ b), then

3.7
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yn = an sin
(
ax+ b+ n · π

2

)
∀ n ∈ N.

(v) If y = cos(ax+ b) then
yn = an cos(ax+ b+ n · π2 ) ∀ n ∈ N.

(vi) If y = emx, then yn = mnemx ∀ n ∈ N.

(vii) If y = amx, a > 0 then
yn = mnamx(ln a)n, ∀ n ∈ N.

(6) State and prove Leibniz Rule of the nth order derivative of the product of two n times
differentiable functions, for n ∈ N.

3.7.3 Practical 1.7: Miscellaneous theory questions from unit III

(1) State and prove Rolle’s Theorem.

OR

If f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b) and if, f(a) = f(b), then
prove that there is c ∈ (a, b) such that f ′(c) = 0.

(2) State and prove Lagrange’s Mean Value Theorem.

OR

If f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b) then prove that there is

c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

(b− a)
.

(3) State and prove Cauchy’s Mean Value Theorem.

OR

If f, g : [a, b]→ R are continuous on [a, b] and differentiable on (a, b), then prove that there
is c ∈ (a, b) such that

g′(c)[f(b)− f(a)] = f ′(c)[g(b)− g(a)].

(4) State and prove Taylor Theorem with Lagrange’s form of remainder.

OR

Let n ∈ Z, n ≥ 0, and f : [a, b]→ R be such that f ′, f ′′, · · · , f (n) exist on [a, b] and further,
f (n) is continuous on [a, b] and differentiable on (a, b). Then there is c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b− a) + f ′′(a)
2! (b− a)2 + · · ·+ f (n)(a)

n!
(b− a)n +

f (n+1)(c)

(n+ 1)!
(b− a)(n+1).

(5) Let I be an interval containing more than one point, and f : I −→ R be a differentiable
function Then prove the following:
(i) f ′(x) ≥ 0 for all x ∈ I ⇐⇒ f is monotonically increasing on I.
(ii)f ′(x) ≤ 0 for all x ∈ I ⇐⇒ f is monotonically decreasing on I.
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(6) Let I be an interval containing more than one point, and f : I −→ R be a differentiable
function. Then we have the following:

(i) f ′ is monotonic increasing on I ⇐⇒ f is convex on I.

(ii) f ′ is monotonic decreasing on I ⇐⇒ f is concave on I.

(7) Let I be an interval containing more than one point, and f : I → R be a twice differen-
tiable function. Then we have the following
(i) f ′′(x) ≥ 0 for all x ∈ I ←→ f is convex on I.
(ii) f ′′(x) ≤ 0 for all x ∈ I ←→ f is concave on I.

(8) Let D ⊆ R and c be an interior point of D. If f : D −→ R is differentiable at c and has a
local extermum at c, then prove that f ′(c) = 0.

(9) Let D ⊆ R, c be an interior point of D, and f : D −→ R be any function. Then :

(i) If f is continuous at c, and also,

(ii) f is differentiable on (c− r, c)
⋃

(c, c+ r) for some r > 0, and

(iii) there is δ > 0 with δ ≤ r such that f ′(x) ≤ 0 ∀x ∈ (c − δ, c) and f ′(x) ≥ 0 ∀x ∈
(c, c+ δ)

then prove that f has a local minimum at c.

(10) Let D ⊆ R, c be an interior point of D, and f : D −→ R be any function. Then :

(i) If f is continuous at c, and also,

(ii) f is differentiable on (c− r, c)
⋃

(c, c+ r) for some r > 0, and

(iii) there is δ > 0 with δ ≤ r such that f ′(x) ≥ 0 ∀x ∈ (c − δ, c) and f ′(x) ≤ 0 ∀x ∈
(c, c+ δ)

then prove that f has a local maximum at c.

(11) Let D ⊆ R, c be an interior point of D, and f : D −→ R be any function. If f is twice
differentiable at c with f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

(12) Let D ⊆ R, c be an interior point of D, and f : D −→ R be any function. If f is twice
differentiable at c with f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

(13) Let D ⊆ R, c be an interior point of D, and f : D → R be a function. Let f be twice
differentiable at c. If c is a point of inflection for f , then prove that f ′′(c) = 0.

(14) Let D ⊆ R, c be an interior point of D, and f : D → R be a function such that f is thrice
differentiable at c. If f ′′(c) = 0 and f3(c) 6= 0, then prove that c is a point of inflection for
f.

(15) State L’Hôpital’s Rule for
0

0
Indeterminate Form when x −→ c, c ∈ R.

(16) State L’Hôpital’s Rule for
0

0
Indeterminate Forms when x −→∞.

(17) State L’Hôpital’s Rule for
0

0
Indeterminate Forms when x −→ −∞.

3.7
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(18) State L’Hôpital’s Rule for
∞
∞

Indeterminate Forms when x −→ c, c ∈ R.

(19) State L’Hôpital’s Rule for
∞
∞

Indeterminate Forms when x −→∞.

(20) State L’Hôpital’s Rule for
∞
∞

Indeterminate Forms when x −→∞.

xxxxxxxxxxxx
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Chapter 4

(USMT 202) Discrete Mathematics

4.1 Practical 2.1: Finite, Infinite, Countable and Uncount-
able Sets, Counting Principles, Two Way Counting

4.1.1 Prerequisite of Practical 2.1

(1) A set S is said to be finite if it is empty or if there is a bijective function between S and
Nm for some m ∈ N (Nm = {1, 2, · · · ,m}).

(2) If there is a bijective function between a non-empty set S and Nm for some m ∈ N then we
say that S has the size m or has the cardinality m and we write |S| = m. The cardinality
of an empty-set is 0 that is |∅| = 0 and we say that empty set has 0 elements.

(3) A set which is not finite is said to be infinite.

(4) Note:

(i) The cardinality of Nn = n i.e. |Nn| = n.

(ii) |X| = n if and only if there is a bijection between X and Nn.

(5) If S 6= ∅, S ⊆ Nn for some n ∈ N then |S| = m for some m ∈ N,m ≤ n.

(6) Let A be a nonempty set; let n ∈ N. Then the following are equivalent:
(1) There is a surjective function f : Nn −→ A.
(2) There is an injective function g : A −→ Nn.
(3) A is finite and |A| ≤ n.

(7) If |X| = n and S ⊆ X then |S| ≤ |X|.

(8) If X,Y are finite sets and there is an injective function f : X −→ Y then |X| ≤ |Y |.

(9) The set N is infinite.

(10) If the set S is such that there is a bijection b : N −→ S, then S is infinite. (converse not
true.)

4.1
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(11) If X is a subset of Y , and X is infinite, then Y is infinite.

(12) A set X is said to be countable if it is finite or if it is in bijection with N.

(13) A set that is not countable is said to be uncountable.

(14) A set X that is both infinite and countable is said to be countably infinite or denu-
merable.

(15) The sets N,Z,N× N,Q are countable.

(16) The sets (0, 1),R \Q,R are uncountable.

(17) A subset of a countable set is also countable (that is finite or countably infinite)

(18) Let A be a nonempty set. Then the following are equivalent:
(1) There is a surjective function f : N −→ A.
(2) There is an injective function g : A −→ N.
(3) A is countable. (that is either finite or countably infinite).

(19) Addition Principle If A and B are non-empty finite sets, and X and Y are disjoint then
|A ∪B| = |A|+ |B|.

Note:

(i) The rule is still valid if X, or B, or both X and Y are empty.

(ii) The rule can be extended to the union of any number of pairwise disjoint sets
A1, A2, · · · , An.

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|
(iii) If there are r1 distinct objects in the first set, r2 distinct objects in the second set,

· · · , and rm distinct objects in the mth set, and if the different sets are disjoint, then
the number of ways to select an object from one of the m sets is r1 + r2 + · · ·+ rm.

(20) Product Set: Let X,Y be any sets. The product set X×Y is the set of all ordered pairs
(x, y).

(21) The Multiplication Principle: Let X and Y be finite non-empty sets. Then the size
of X × Y is given by |X × Y | = |X| × |Y |.

(22) Two way counting theorem: Let X and Y be finite non-empty sets, and S be a subset
of X × Y . Let Rx(S) be the set of pairs in S whose first coordinate is x and Cy(S) be the
set of pairs in S whose second coordinate is y. Then the following results hold.

(i) The size of S is given by

|S| =
∑
x

|Rx(S)| =
∑
y

|Cy(S)|.

(ii) If |Rx(S)| is a constant r, independent of x and |Cy(S)| is a constant c, independent
of y, then r|X| = c|Y |.

(A) Objective Questions

Choose correct alternative in each of the following:

(1) If X is a finite set and f : Nn −→ X is a surjective function for some n ∈ N then
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(a) |X| ≤ n. (b) |X| > n. (c) |X| = n (d) None of these.

(2) If A is a countable set, and B is an uncountable set, then the most we can say about A∪B
is that it is

(a) Finite (b) Countable (c) Uncountable (d) None of these

(3) If A is a countable set, and B is finite set, then the most we can say about A ∪B is that
it is

(a) Finite (b) Countable (c) Uncountable (d) None of these

(4) If A is an uncountable set, and B is finite set, then the most we can say about A ∪ B is
that it is

(a) Finite (b) Countable (c) Uncountable (d) None of these

(5) If X is a countable set, and Y is an uncountable set, then the most we can say about the
Cartesian product X × Y is that it is

(a) Finite (b) Countable (c) Uncountable (d) None of these

(6) If a set S is such that ∃ a bijection between S and Ns and there exists a bijection between
S and Nt for some s, t ∈ N , then

(a) s = t (b) s 6= t (c) s > t (d) s < t

(7) If X,Y are finite sets and there is an injective function f : X → Y then

(a) |X| = |Y | (b) |X| ≤ |Y | (c) |X| ≥ |Y | (d) |X| < |Y |

(8) The number of functions from a set with m elements to one with n elements are

(a) mn (b) nm (c) m× n (d) None of these

(9) A new company with just two employees, Sanchez and Patel, rents a floor of a building
with 12 offices. How many ways are there to assign different offices to these two employees?

(a) 23 (b) 132 (c) 144 (d) None of these

(10) In how many ways can we draw a heart or a spade from an ordinary deck of playing cards?

4.1
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(a) 169 (b) 26 (c) 52 (d) None of these

(11) A student can choose a computer project from one of three lists. The three lists contain
23, 15 and 19 possible projects, respectively. How many possible projects are there to
choose from ?

(a) 38 (b) 57 (c) 34 (d) 42

(12) There are 32 micro computers in a computer center. Each micro computer has 24 ports.
How many different ports to a micro computer in the center are there ?

(a) 56 (b) 768 (c) 8 (d) None of these

(13) The number of ways to pick a sequence of two different letters of the alphabet that appear
in the word BOAT is

(a) 21 (b) 12 (c) 8 (d) None of these

(14) The number of ways to pick first a vowel and then a consonant from the word MATHE-
MATICS is

(a) 56 (b) 15 (c) 4 (d) None of these

(15) How many ways are there to pick a man and a woman who are not husband and wife from
a group of n married couples

(a) n! (b) n(n− 1) (c) n+ (n− 1) (d) None of these

(B) Descriptive Questions

(1) Show that in any set X of people there are two members of X who have the same number
of friends in X.

(2) Show that the set N is infinite.

(3) Prove that if X is a subset of Y , and X is infinite, then Y is infinite.

(4) Show that the set Z of all integers is countable.

(5) Show that every infinite subset of N is countable.

(6) Prove that a subset of a countable set is countable.

(7) Show that N× N is countable.
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(8) Show that Q+ is countable.

(9) Show that Q is countable.

(10) Show that (0, 1) the set of all real numbers between 0 and 1 is uncountable.

(11) Show that [0, 1] is uncountable.

(12) Show that R is uncountable.

(13) In Algebra class, 40 of the students are boys. Each boy knows six of the girls in the class
and each girl knows eight of the boys. How many girls are in the class?

(14) How many different 4-letter radio station call letters (upper case) can be made
a) if the first letter must be a K or W and no letter may be repeated?
b) if repeats are allowed (but the first letter is a K or W).
c) How many of the 4-letter call letters (starting with K or W) with no repeats and ending
in R?

(15) How many ways are there to pick 2 different cards from a standard 52 card deck such that:
(a) The first card is an Ace and the second card is not a Queen?
(b) The first card is a spade and the second card is not a Queen?

(16) How many ways are there to roll two dice to yield a sum divisible by 3?

(17) How many nonempty different collections can be formed from five (identical) apples and
eight (identical) oranges?

(18) How many two-digit numbers have distinct and non-zero digits?

(19) How many ways can we get a sum of 4 or of 8 when two distinguishable dice (say red and
white) are rolled? How many ways can we get an even sum?

(20) In how many ways can we draw a heart or a spade from an ordinary deck of playing cards
? A heart or an ace ? An ace or a king ? A card numbered 2 through 10 ? A numbered
card or a king ?

(21) A store carries 8 styles of pants. For each style, there are 10 different possible waist sizes,
6 pants lengths, and 4 colour choices. How many different types of pants could the store
have?

(22) Given eight different English books, seven different French books, and five different German
books:
(a) How many ways are there to select one book?
(b) How many ways are there to select three books, one of each language?

(23) How many ways are there to form a three-letter sequence using the letters a, b, c, d, e, f:
(a) with repetition of letters allowed?
(b) without repetition of any letter?
(c) without repetition and containing the letter e?
(d) with repetition and containing e?

4.2
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4.2 Practical 2.2: Stirling numbers of second kind, Pigeon
hole principle

4.2.1 Prerequisite of Practical 2.2

(1) A partition of a set X is a family {Xi/i ∈ I} of non-empty subsets of X such that

(i) X is the union of the sets Xi (i ∈ I).

(ii) each pair Xi, Xj (i 6= j) is disjoint.

The subsets Xi are called the parts of the partition.

(2) Let n, k be non-negative integers. The Stirling number of second kind S(n, k) is the
total number of partitions on an n− set into k disjoint, non-empty, unordered subsets.
Note:

(i) Equivalently, a Stirling number of the second kind can identify how many ways a
number of distinct objects can be distributed among identical non-empty bins. Let
n be the number of distinct objects to be distributed among k identical bins.

(ii) By convention, S(0, 0) = 1 while S(n, 0) = 0 for every positive integer n.

For example: Find S(4, 2) by writing all the partitions of the set {1, 2, 3, 4} into two parts.
All the partitions of {1, 2, 3, 4} into two parts are

(1) {1}, {2, 3, 4};
(2) {2}, {1, 3, 4};
(3) {3}, {1, 2, 4};
(4) {4}, {1, 2, 3};

(5) {1, 2}, {3, 4};

(6) {1, 3}, {2, 4};

(7) {1, 4}, {2, 3}.

Hence S(4, 2) = 7

(3) S(n, n− 1) =

(
n
2

)
.

(4) The number of ways of putting n balls of distinct colours into k distinct boxes with each
box containing at least one ball is k!S(n, k).

(5) Let n and k be positive integers. Then show that the number of surjective functions from
an n−set to a k−set is equal to k!S(n, k).

(6) Let n, k be positive integers with n ≥ k. Then
. S(n, k) = S(n− 1, k − 1) + k S(n− 1, k).

(7) For all n ≥ 2, S(n, 2) = 2n−1 − 1.

(8) Simplest form of the Pigeonhole Principle:
When n + 1 pigeons are to be put in n boxes, there is at least one box that receives two
(or more) pigeons.
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(9) Strong pigeonhole principle:
Let q1, q2, · · · , qn be positive integers. If q1 + q2 + · · ·+ qn − n+ 1 objects are put into n
boxes, then either the first box contains at least q1 objects, or the second box contains at
least q2 objects,· · · , or the nth box contains at least qn objects.

Note:

(1) It is possible to distribute q1 + q2 + · · ·+ qn − n objects among n boxes by putting
q1 − 1 objects into the first box, q2 − 1 objects into the second box, and so on.

(2) The simple form of the pigeonhole principle is obtained from the strong form by
taking q1 = q2 = · · · = qn = 2 ∴ q1 + q2 + · · · + qn − n + 1 = 2n − n + 1 = n + 1
and the statement becomes if n + 1 objects are to be distributed into n boxes then
either the first box contains at least q1 = 2 objects or the second box contains at
least q2 = 2 objects · · · or the nth box contains at least qn = 2 objects. i.e. If
n+ 1 objects are put into n boxes, then at least one box contains two or more of the
objects.

(3) If q1 = q2 = · · · = qn = r+1 ∴ q1 +q2 + · · ·+qn−n+1 = (r+1) n−n+1 = r n+1
then the statement becomes if n r+ 1 objects are to be distributed into n boxes then
either the first box contains at least q1 = r+ 1 objects or the second box contains at
least q2 = r + 1 objects · · · or the nth box contains at least qn = r + 1 objects.
In short, If r n+ 1 objects are put into n boxes, then at least one box contains r+ 1
or more of the objects.
∴ If m objects are distributed into n boxes and m ≥ nr + 1, then at least
one box contains at least r + 1 objects.

4.2.2 PRACTICAL 2.2

(A) Objective Questions

Choose correct alternative in each of the following:

(1) Which of the following is a partition of {1, 2, . . . , 8}?

(a) {{1, 3, 5}, {1, 2, 6}, {4, 7, 8}}
(b) {{1, 3, 5}, {2, 6, 7}, {4, 8}}

(c) {{1, 3, 5}, {2, 6}, {2, 6}, {4, 7, 8}}
(d) {{1, 5}, {2, 6}, {4, 8}}

(2) Let S(n, k) denote Stirling number of second kind on n-set into k-disjoint nonempty un-
ordered subsets, then S(0, 0) is

(a) 1 (b) 0 (c) n (d) None of these

(3) Let S(n, k) denote Stirling number of second kind on n-set into k-disjoint nonempty un-
ordered subsets, then S(n, n) is

(a) 0 (b) 1 (c) n (d) None of these

(4) Let S(n, k) denote Stirling number of second kind on n-set into k-disjoint nonempty un-
ordered subsets, then S(n, k) = 0 if

4.2
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(a) k > n (b) k < n (c) k = n (d) None of these

(5) Let S(n, k) denote Stirling number of second kind on n-set into k-disjoint nonempty un-
ordered subsets, then S(n, 1) is

(a) n! (b) (n− 1)! (c) 1 (d) None of these

(6) If n and k be positive integers with n ≥ k, then S(n, k) has recurrence formula

(a) S(n, k) = S(n− 1, k − 1) + kS(n, k)

(b) S(n, k) = S(n− 1, k− 1) + kS(n− 1, k)

(c) S(n, k) = S(n− 1, k− 1) + kS(n, k− 1)

(d) None of these

(7) A basket of fruit is being arranged out of apples, bananas, and oranges. What is the
smallest number of pieces of fruit that should be put in the basket in order to guarantee
that either there are at least 8 apples or at least 6 bananas or at least 9 oranges?

(a) 12 (b) 21 (c) 20 (d) None of these

(8) What is the minimum number of students required in a discrete mathematics class to be
sure that at least six will receive the same grade, if there are five possible grades, A, B, C,
D, and F?

(a) 25 (b) 26 (c) 5 (d) None of these

(9) How many students must be in a class to guarantee that at least two students receive the
same score on the final exam, if the exam is graded on a scale from 0 to 100 points?

(a) 101 (b) 102 (c) 100 (d) None of these

(10) The number of pigeons are distributed among k pigeonholes, then at least one pigeonhole
contains two or more pigeons is

(a) k + 1 or more (b) k or more (c) k − 1 or more (d) None of these

(11) Let m objects be distributed into n boxes, then at least one box contains at least r + 1
objects only if,

(a) m > nr (b) m < nr (c) m = nr (d) None of these.

(B) Descriptive Questions

(1) Define Stirling number S(n, k) of second kind. Prove that S(n, n− 1) =

(
n
2

)
.

(2) Prove that S(n, n− 2) =

(
n
3

)
+ 3

(
n
4

)
= 1

4(3n− 5)

(
n
3

)
.
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(3) Prove that S(n, n− 3) = 1
2(n2 − 5n+ 6)

(
n
4

)
.

(4) Without finding the value of either the LHS or RHS, show that S(5, 2) =

(
5

1

)
+

(
5

2

)
.

(5) Find S(7, 3) by using the recursion formula for S(n, k).

(6) Let S(n, k) be the Stirling number of second kind. Find S(4, 2), S(5, 2), S(6, 2), S(6, 3).

(7) Show that if we take n+ 1 numbers from the set {1, 2, . . . , 2n}, then some pair of numbers
will have no factors in common.

(8) Show that if n + 1 integers are chosen from the set {1, 2, . . . , 3n}, then there are always
two which differ by at most two.

(9) Given 5 points in the plane with integer coordinates, show that there exists a pair of points
whose midpoint also has integer coordinates.

(10) During a month with 30 days a baseball team plays at least a game a day, but no more
than 45 games. Show that there must be a period of some number of consecutive days
during which the team must play exactly 14 games.

(11) A student has 6 weeks (that is, 42 days) to prepare for her examination and she has decided
that during this period she will put in a total of 70 hours towards her preparation for the
examination. She decides to study in full hours every day, studying at least one hour on
each day. Prove that no matter how she schedules her studying pattern, she will study for
exactly 13 hours during some consecutive days.

(12) A chess player has 77 days to prepare for a serious tournament. He decides to practice by
playing at least one game per day and a total of 132 games. Show that there is a succession
of days during which he must have played exactly 21 games.

(13) A chess master who has 11 weeks to prepare for a tournament decides to pay at least one
game every day but, in order not to tire himself, he decides not to play more than 12
games during any calender week. Show that there exists a succession of (consecutive) days
during which the chess master will have played exactly 21 games.

(14) Prove that if seven distinct numbers are selected from {1, 2, . . . , 11}, then some two of
these numbers sum to 12.

(15) From the integers 1, 2, . . . , 200, we choose 101 integers. Show that, among the integers
chosen, there are two such that one of them is divisible by the other.

(16) Show that in any set of six people there are either three mutual friends or three mutual
strangers. Further, show that it is possible to have a group of five people such that in any
collection of three people out of these five, only two are mutual friends or only two are
mutual strangers.

(17) Ten line segments are drawn, joining (1, 1), (7, 5), (8, 2), (9, 4) and (4, 4). Identify a
mid point of these 10 line segments, such that both the coordinates of the mid-point are
integers.
(Generalization of the above problem) Let P1, P2, P3, P4andP5 be any 5 lattice points in

4.2
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the plane. (A point in the Cartesian plane is called a lattice point if both of its coor-
dinates are integers). Show that at least one of the line segments, determined by these
lattice points has some lattice point (not necessarily from P1 to P5) as its mid-point.

(18) Show that in any set of 10 people there are either four mutual friends or three mutual
strangers.

(19) Is it possible to draw a regular pentagon along with all its diagonals, using two colours Red
and Blue, such that there does not exist any triangle (created by considering any three
points of the five points) which has all its sides either of Red colour or of Blue colour?
(Draw such a pentagon and confirm that the answer to this question is affirmative. While
joining the points, you may consider a continuous segment as Red colour and a dotted
segment as Blue colour.)

(20) If 5 points are chosen at random in the interior of an equilateral triangle of side length 2
units, show that at least 1 pair of points has a separation of less than 1 unit.

(21) If 10 points are chosen at random in the interior of an equilateral triangle of side length 3
units, show that at least 1 pair of points has a separation of less than 1 unit.

(22) If 5 points are chosen at random in the interior of a square of side length 2 units, show
that at least 1 pair of points has a separation of less than

√
2 units.

(23) Show that among any five points inside an equilateral triangle of side length 1, there exist
two points whose distance is at most 1

2 .

4.3 Practical 2.3: Multinomial theorem, identities, permuta-
tion and combination of multi-set

4.3.1 Prerequisite of Practical 2.3

(1) Binomial Theorem:

Let n be a non-negative integer. Then

(x+ y)n =

(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·+

(
n
n

)
yn.

(2) The number of ways of putting n distinct objects in r distinct boxes B1, B2, · · · , Br such
that the ith box Bi holds ni objects is called a multinomial coefficient and is denoted

by

(
n

n1, n2, · · · , nr

)
.

(3) Let S be an n − set and suppose the n objects in S are to be put in r distinct boxes
B1, B2, · · · , Br such that the ith box Bi contains ni objects with n1 + n2 + · · · + nr = n.

Then the number of ways of doing this is equal to

(
n

n1, n2, · · · , nr

)
=

n!

n1!n2! · · ·nr!
.

(4) The multinomial theorem: Let n be a non-negative integer. Then :

(x1 + x2 + · · ·+ xr)
n =

∑
n1+···+nr=n

(
n

n1, n2, · · · , nr

)
x1
n1x2

n2 · · ·xrnr ,
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where the summation extends over all nonnegative integers n1, n2, · · ·+ nr = n.
We can use this in the following examples:

(i) Find the coefficient of x1
2x3x4

3x5 in the expansion of (x1 + x2 + x3 + x4 + x5)7.

Coeffiecient of x1
2x3x4

3x5 in the expansion of (x1 + x2 + x3 + x4 + x5)7 is
7!

2!1!3!
=

4 ∗ 5 ∗ 6 ∗ 7

2
= 420.

(ii) Find the coefficient of x1
3x2x3

2 in the expansion of (2x1 − 3x2 + 5x3)6.
Put 2x1 = X1,−3x2 = X2, 5x3 = X3.
We will find coefficient of X3

1X2X
2
3 in (X1 +X2 +X3)6.

The coefficient =
6!

3!1!2!
=

4 ∗ 5 ∗ 6

2
= 60.

So the term in the expansion of (2x1− 3x2 + 5x3)6 will be 60 ∗ (2x1)3(−3x2)(5x3)2 =
60 ∗ 8 ∗ (−3) ∗ 25x3

1x2x
2
3.

So the coefficient of x1
3x2x3

2 is −60 ∗ 600 = −3600.

(5) Pascal Identity: Let n and k be positive integers. Then

(
n
r

)
=

(
n− 1
r

)
+

(
n− 1
r − 1

)
.

(6) Some more identities:

(i)
r∑

k=0

(
m
k

)(
n

r − k

)
=

(
m+ n
r

)
.

(ii)

n∑
i=r

(
i
r

)
=

(
n+ 1
r + 1

)
.

(iii)
n∑
k=0

(
n
k

)2

=

(
2n
n

)
.

(iv)
n∑
k=0

(
n
k

)
= 2n.

(7) An r−permutation of a set S is an ordered r−tuple of elements of S.

Note:

(i) The number of r−permutations of an n−set is denoted by P (n, r) = n(n − 1)(n −

2) · · · (n− (r − 1)) =
n!

(n− r)!
.

(ii) P (n, n) = n! and P (n, 1) = n.

(iii) P (n, r) = 0 if r > n.

(iv) An n−permutation of {1, 2, . . . , n} is called a permutation. And if (i1, i2, · · · , in) is
a permutation, we can write it as i1i2 . . . in or(

1 2 3 · · · n
i1 i2 i3 · · · in

)
.

4.3
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(8) Permutations of Multisets: If S is a multi-set, an r−permutation of S is an ordered
arrangement of r of the objects of S.
If the total number of objects of S is n (counting repetitions), then an n−permutation of
S will also be called a permutation of S.
e.g. S = {a, a, b, c, c, c}, then acbc, cbcc, abca are some of the 4−permutations.
And abccca, acbacc are some of the permutations or 6−permutations ( they are called
permutations since all the six letters are used)

(9) Let S be a multi-set consisting of k distinct objects, each with infinite multiplicity. Then
the total number of r−permutations of S is kr.

(10) Let S be a multi-set with k distinct objects with finite repetition numbers n1, n2, . . . , nk
respectively. So the size of S is n = n1 + n2 + · · ·+ nk. Then the number of permutations

of S equals
n!

n1!n2! · · ·nk!
.

(11) Circular Permutations If instead of arranging the objects in a line, we arrange them in
a circle, the number of circular permutations is smaller.
Suppose six children are marching in a circle. In how many different ways can they form
their circle?
Since the children are moving, what matters are their positions relative to each other and
not to their environment.
Clearly, two circular permutations are considered as the same if one can get the other by
a rotation, that is, by a circular shift.
There are six linear permutations for each circular permutation.
Thus, there is a 6−to1 correspondence between the linear permutations of six children and
the circular permutations of the six children.
Therefore, to find the number of circular permutations, we divide the number of linear
permutations by 6.

Hence, the number of circular permutations of the six children equals
6!

6
= 5!

(12) The number of circular r−permutations of a set of n elements is given by
P (n, r)

r
=

n!

r ∗ (n− r)!
.

In particular, the number of circular permutations ( permutation means n−permutation)
of n elements is (n− 1)!.

(13) Combinations of Sets: Let S be a set of n elements. A combination of a set S is an
unordered selection of the elements of S.

(14) Let r be a non-negative integer. By an r−combination of a set S of n elements, is an
unordered selection of r of the n objects.

(15) For 0 ≤ r ≤ n, P (n, r) = r!×
(
n
r

)
.

(16) Combinations of Multi-sets: If S is a multi-set, then an r−combination of S is an
unordered selection of r of the objects of S. Note: (1) Thus an r−combination of S is
itself a multi-set, a submulti-set of S.
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(2) If S has n objects, then there is only one n−combination of S,namely, S itself.
(3) If S contains objects of k different types, then the number of 1−combinations of S =
k

(17) Let S be a multi-set with objects of k different types each with an infinite repetition
number (multiplicity). Then the number of r−combinations of S equals(
r + k − 1

r

)
=

(
r + k − 1
k − 1

)
.

(18) The number of ways of putting r identical objects into k distinct boxes with each box

containing at least one object is

(
r − 1
k − 1

)
.

4.3.2 PRACTICAL 2.3

(A) Objective Questions

Choose correct alternative in each of the following:

(1) How many 10-letter patterns can be formed from the letters of the word BASKETBALL?

(a) C(10, 10)

(b)
10!

2!2!1!1!1!1!2!

(c)
10!

2! + 2! + 1! + 1! + 1! + 1! + 2!

(d) None of these

(2) In how many ways can the letters of the word ’LEADER’ be arranged?

(a) 72 (b) 144 (c) 360 (d) None of these

(3) In how many ways can 15 billiard balls be arranged in a row if 3 are red, 4 are white and
8 are black?

(a) 12 (b) 18 (c) 96 (d) None of these

(4) In how many ways can a party of 9 persons arrange themselves around a circular table?

(a) 9! (b) 8! (c) 9!+8! (d) None of these

(5) The number of ways of placing 8 similar balls in 5 numbered boxes is

(a) C(12, 8) (b) C(13, 8) (c) C(12, 5) (d) None of these

(6) The number of terms in the expansion of (2x+ 3y − 5z)8 is

(a) C(10, 8) (b) C(11, 8) (c) C(10, 3) (d) None of these

(7) How many ways are there to select a captain and a vice captain from 15 members of a
cricket team?

4.3
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(a) P (15, 2) (b) P (14, 2) (c) P (15, 14) (d) None of these

(8) Suppose that Sachin has to visit eight different cities. He must begin his trip in a specified
city, but later he can visit the other seven cities in any order he wishes. How many possible
ways are there for Sachin to visit these cities?

(a) 7! (b) 8! (c) 56 (d) None of these

(9) How many ways are there to select five players for an inter college basket ball match from
a 10-member team?

(a) C(10, 5) (b) P (10, 5) (c) C(10, 2) (d) None of these

(10) How many 3 digit numbers can be formed using the digits 1, 3, 5, 7, 9, where we are
allowed to repeat the digits?

(a) 125 (b) 25 (c) 5 (d) None of these

(11) Suppose that there are 9 faculty members in the mathematics department and 11 in the
computer science department of a college. How many ways are there to select a committee
to develop a discrete mathematics course at the college if the committee is to consist of
three faculty members from the mathematics department and four from the computer
science department?

(a) C(9, 3).C(11, 4) (b) P (9, 3).P (11, 4) (c) P (9, 3).C(11, 4) (d) None of these

(12) How many solutions are there to the equation x1 + x2 + x3 + x4 = 17, where x1, x2, x3,
and x4 are nonnegative integers?

(a) C(20, 3) (b) C(17, 3) (c) C(21, 3) (d) None of these

(13) A box contains 12 black and 8 green marbles. How many ways can 3 black and 2 green
marbles be chosen?

(a) C(12, 3) + C(8, 2)

(b) C(12, 2) + C(8, 3)

(c) C(12, 5) + C(8, 5)

(d) None of these

(B) Descriptive Questions

(1) Find the coefficient of x2
1x3x

3
4x5 in the expansion of (x1 + x2 + x3 + x4 + x5)7.

(2) Find the coefficient of x3
1x2x

2
3 in the expansion of (2x1 − 3x2 + 5x3)6.

(3) How many 11-letter words can be made from the letters of the word ABRACADABRA?

(4) How many 11 letter words can be made form the letters of the word MISSISSIPPI?

(5) Evaluate the multinomial numbers

(
11

4, 3, 2, 1

)
and

(
9

5, 2

)
.

(6) Prove that
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(i)
∑r

k=0

(
m
k

)(
n

r − k

)
=

(
m+ n
r

)
.

(ii)
∑n

i=r

(
i
r

)
=

(
n+ 1
r + 1

)
.

(iii)
∑n

k=0

(
n
k

)2

=

(
2n
n

)
.

(iv)
∑n

k=0

(
n
k

)
= 2n.

(v) 2n =
n∑
k=0

(−1)k
(
n

k

)
3n−k.

(vi) 3n =
n∑
k=0

(
n

k

)
2k.

(7) Provide the combinatorial proof of the following identities:

(i)

(
n

k

)(
k

m

)
=

(
n

m

)(
n−m
k −m

)
.

(ii)

(
2n

2

)
= 2

(
n

2

)
+ n2.

Hint:Observe the sketch, drawn below

(8) How many r-permutations does an n-set have?

(9) If S = {a, b, c}, then find all 1-permutations, 2-permutations, 3-permutations of S.

(10) What is the number of ways to order the 26 letters of the alphabet so that no two of the
vowels a, e, i, o, and u occur consecutively?

(11) How many seven-digit numbers are there such that the digits are distinct integers taken
from {1, 2, . . . 9} and such that the digits 5 and 6 do not appear consecutively.

(12) Consider the multi-set {3.a, 2.b, 4.c} of 9 objects of 3 types. Find the number of 8-
permutations of S.

(13) Ten people, including two who do not wish to sit next to one another, are to be seated at
a round table. How many circular seating arrangements are there?

(14) There are 15 people enrolled in a mathematics course, but exactly 12 attend on any given
day. There are 25 seats in the classroom. Find the number of different ways in which an
instructor might see the 12 students in the classroom.

(15) How many eight-letter words can be constructed by using the 26 letters of the alphabet if
each word contains three, four or five vowels? It is understood that there is no restriction
on the number of times a letter can be used in a word.

4.3
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(16) Let S be the multi-set {10.a, 10.b, 10.c, 10.d} with objects of four types ab, c and d. What
is the number of 10-combinations of S which have the property that each of the four types
of objects occurs at least once.

(17) Write the number of integral solutions of the equation x1 + x2 + x3 + x4 = 20 in which
x1 ≥ 3, x2 ≥ 1, x3 ≥ 0, x4 ≥ 5

(18) There are five types of colour T-shirts on sale, black, blue, green, orange, and white. John
is going to buy ten T-shirts, he has to buy at least two blues and two oranges, and at least
one for all other colours. Find the number of ways that John can select ten T-shirts.

4.4 Practical 2.4: Inclusion-Exclusion principle. Euler phi
function

4.4.1 Prerequisite of Practical 2.4

(1) The Inclusion-Exclusion Principle: Let X be a finite set and let Pi; i = 1, 2, . . . , n
be a set of n properties satisfied by some of the elements of X. Let Ai denote the set of
those elements of X that satisfy the property Pi. Then the size of the set A1 ∩ A2 · · ·An
of all those elements that do not satisfy any one of these properties is given by

|A1 ∩A2 ∩ · · ·An| = |X| −
n∑
i=1

|Ai|+
∑

1≤i<j≤n
|Ai ∩Aj | − · · ·+ (−1)k

∑
1≤i1<i2<···<ik≤n

|Ai1 ∩

Ai2 ∩Ai3 · · · ∩Aik|+ · · ·+ (−1)n|A1 ∩A2 ∩ · · · ∩An|.

(2) A derangement of {1, 2, . . . , n} is a permutation i1i2 . . . in of {1, 2, . . . , n} such that
i1 6= 1, i2 6= 2, . . . , in 6= n.
Thus a derangement of {1, 2, . . . , n} is a permutation i1i2 . . . in of {1, 2, . . . , n} in which no
integer is in its natural position. We denote the number of derangements of {1, 2, . . . , n}
by Dn.
Note:

(i) For n = 1 there are no derangements. D1 = 0

(ii) The only derangement for n = 2 is (2, 1) i.e.(
1 2
2 1

)
∴ D2 = 1

(iii) For n = 4, the different derangements are(
1 2 3 4
2 1 4 3

)
,

(
1 2 3 4
3 1 4 2

)
,

(
1 2 3 4
4 1 2 3

)
,(

1 2 3 4
2 3 4 1

)
,

(
1 2 3 4
3 4 1 2

)
,

(
1 2 3 4
4 3 1 2

)
,(

1 2 3 4
2 4 1 3

)
,

(
1 2 3 4
3 4 2 1

)
,

(
1 2 3 4
4 3 2 1

)
.
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∴ D4 = 9

(iv) We can show that D3 = 2.

(3) The number of derangements Dn of {1, 2, . . . , n} is given by

Dn = n!

{
1

0!
− 1

1!
+

1

2!
− 1

3!
· · ·+ (−1)n

1

n!

}
.

(4) e−1 =
Dn

n!
.

(5) The number of integers x in the range 1 ≤ x ≤ n which are coprime to n, is denoted by
φ(n), the value of Euler’s function φ at n.

(6) Let n ≥ 2 be an integer whose prime factorization is n = p1
α1p2

α2 · · · prαr where αi ≥

1 ∀ i, 1 ≤ i ≤ r . Then φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
.

4.4.2 PRACTICAL 2.4

(A) Objective Questions

Choose correct alternative in each of the following:

(1) If a school has 100 students with 50 students taking French, 40 students taking Latin, and
20 students taking both languages, how many students take no language?

(a) 110 (b) 30 (c) 210 (d) None of these

(2) Suppose that there are 1807 freshmen at your school. Of these, 453 are taking a course
in computer science, 567 are taking a course in mathematics, and 299 are taking courses
in both computer science and mathematics. How many are not taking a course either in
computer science or in mathematics?

(a) 1086 (b) 721 (c) 1020 (d) None of these

(3) How many positive integers not exceeding 1000 are divisible by 7 or 11?

(a) 232 (b) 220 (c) 244 (d) None of these

(4) Which is the following derangement of on 1, 2, 3, 4, 5?

(a)

(
1 2 3 4 5
2 1 5 4 3

)
(b)

(
1 2 3 4 5
2 1 4 5 3

)
(c)

(
1 2 3 4 5
1 2 3 4 5

)
(d) None of these

(5) At a party there are n men and n women. In how many ways can the n women choose
male partners for the dance?

4.4
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(a) Dn (b) n! (c) (n− 2)! (d) None of these

(6) At a party there are n men and n women. How many ways are there for the dance if
everyone has to change partners?

(a) n! (b) Dn (c) (n− 2)! (d) None of these

(7) At a party, seven gentlemen check their hats. In how many ways can their hats be returned
so that no gentleman receives his own hat?

(a) 7! (b) D7 (c) D7
7 (d) None of these

(8) At a party, seven gentlemen check their hats. In how many ways can their hats be returned
so that at least one of the gentlemen receives his own hat?

(a) 7! (b) 7!−D7 (c) 7!×D7 (d) None of these

(9) If p is a prime and k > 0, then:

(a) φ(pk) = pk
(

1 + 1
p

)
(b) φ(pk) = p

(
1− 1

p

) (c) φ(pk) = pk
(

1− 1
p

)
(d) None of these

(10) If n ≥ 2 is an integer whose prime factorisation is n = pα1
1 pα2

2 . . . pαrr where αi ≥ 1,
∀i, 1 ≤ i ≤ r, then

(a) φ(n) = n
(

1 + 1
p1

)(
1 + 1

p21

)
. . .
(

1 + 1
pr

)
(b) φ(n) =

(
1− 1

p1

)(
1− 1

p21

)
. . .
(

1− 1
pr

) (c) φ(n) = n
(

1− 1
p1

)(
1− 1

p21

)
. . .
(

1− 1
pr

)
(d) None of these

(11) For n > 2, φ(n) is:

(a) Prime number (b) Even number (c) Odd number (d) None of these

(12) If n > 1, is prime. Then φ(n) is:

(a) n− 1 (b) n (c) n+ 1 (d) None of these

(13) φ(13) is:

(a) 13 (b) 12 (c) 14 (d) None of these

(B) Descriptive Questions

(1) There are 73 students in the first year Humanities class at the University of California.
Among them a total of 52 can play the piano, 25 can play the violin, and 20 can play the
flute, 17 can play both piano and violin, 12 can play piano and flute, and 7 can play violin
and flute, but only one student can play all three instruments. How many in the class
cannot play any of them?
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(2) In a class of 67 mathematics students, 47 can read French, 35 can read German and 23
can read both languages. How many can read neither language? If, furthermore, 20 can
read Russian, of whom 12 also read French, 11 read German also and 5 read all three
languages, how many cannot read any of the three languages?

(3) Find the number of ways of arranging the letters A, E, M, O, U, Y in a sequence in such
a way that the words ME and YOU do not occur.

(4) Define derangement.Write formula for derangement Dn and hence find D5.

(5) Define Euler φ function. Find φ(60) by using Euler formula φ(n) ?

(6) A total of 1232 students have taken a course in Spanish, 879 have taken a course in French,
and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish
and French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses
in both French and Russian. If 2092 students have taken at least one of Spanish, French,
and Russian, how many students have taken a course in all three languages?

(7) How many positive integers < 70 are relatively prime to 70?

(8) Suppose there are 100 students in a school and there are 40 students taking each language,
French, Latin, and German. Twenty students are taking only French, 20 only Latin, and 15
only German. In addition, 10 students are taking French and Latin. How many students
are taking all three languages? No language?

(9) Find the number of integers between 1 and 1000, inclusive, that are not divisible by 5, 6,
and 8.

(10) How many permutations of the letters M, A, T, H, I, S, F, U, N are there such that none
of the words MATH, IS, and FUN occur as consecutive letters? (Thus, for instance, the
permutation MATHISFUN is not allowed, nor are the permutations INUMATHSF and
ISMATHFUN.)

(11) Find the number of permutations i1, i2, . . . , in of {1, 2, . . . , n} in which 1 is not in the first
position (i.e.i1 6= 1).

(12) Show that e−1 = Dn
n! where Dn is the number of derangements on n symbols.

(13) Define derangement Dn. Show that Dn = (n− 1)(Dn−2 +Dn−1) (n = 3, 4, 5, . . . ).

(14) Define derangement Dn. Show that Dn = nDn−1 + (−1)n (n = 2, 3, 4, . . . ) with D1 =
0, D2 = 1.

(15) How many solutions does x1 + x2 + x3 = 11 have, where x1, x2 and x3 are non-negative
integers x ≤ 3, x2 ≤ 4 and x3 ≤ 6?

(16) If p is a prime and k > 0, then prove that φ(pk) = pk
(

1− 1
p

)
.

(17) Define Euler φ function. Hence find φ(360).

(18) In how many ways 5 gents and 4 ladies dine at a round table, if no two ladies are to sit
together?

4.5
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(19) Twelve persons are made to sit around a round table. Find the number of ways they can
sit such that 2 specified are not together.

4.5 USMT 202: Practical 2.5: Permutations, cycles and sig-
nature of Permutations

4.5.1 Prerequisite for Practical 2.5

(1) A permutation on Nn is a bijection from Nn onto itself.
If σ is a permutation on Nn, then we write it as

σ =

(
1 2 3 . . . n

σ(1) σ(2) σ(3) . . . σ(n)

)
where 1 −→ σ(1), 2 −→ σ(2), . . .

(2) The identity permutation on Nn is denoted by

i =

(
1 2 3 · · · n
1 2 3 · · · n

)
.

(3) The set of all permutations on n symbols is denoted by Sn.

(4) Since the number of permutations on n symbols is n!, therefore |Sn| = n!.

(5) For every permutation σ ∈ Sn, we can find its inverse σ−1 using the following trick:

If σ =

(
1 2 3 . . . n

σ(1) σ(2) σ(3) . . . σ(n)

)
then σ−1 =

(
σ(1) σ(2) σ(3) . . . σ(n)

1 2 3 . . . n

)
.

Then we rearrange the columns so that the first row is again 1 2 . . . n.

For example: ρ =

(
1 2 3 4 5 6 7 8
4 5 3 2 8 7 6 1

)
∈ S8. Then

ρ−1 =

(
4 5 3 2 8 7 6 1
1 2 3 4 5 6 7 8

)
=

(
1 2 3 4 5 6 7 8
8 4 3 1 2 7 6 5

)
We will verify that ρ ◦

ρ−1 = i (i is the identity permutation in S8).

ρ◦ρ−1 =

(
1 2 3 4 5 6 7 8
4 5 3 2 8 7 6 1

)(
1 2 3 4 5 6 7 8
8 4 3 1 2 7 6 5

)
=

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
.

(6) Cyclic notation: Consider a permutation σ1 ∈ S3 as follows:

σ1 =

(
1 2 3
2 3 1

)
.

Under σ1, 1 goes to 2 then 2 goes to 3 and then 3 goes back to 1. So, instead of writing
this permutation in two rows we can write it as simply (1 2 3).

Similarly the permutation σ2 =

(
1 2 3
3 1 2

)
∈ S3 can be written as a cycle (1 3 2).

Now we will write τ1 =

(
1 2 3
1 3 2

)
as a cycle (2 3). Since 1 goes to itself, we don’t

write it at all.
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Length of a cycle: If σ ∈ Sn is a cycle such that σ = (a1 a2 · · · ar) then we say that
σ is a cycle of length r.
So, τ1 is a cycle of length 2.

τ2 =

(
1 2 3
3 2 1

)
= (1 3) ∴ τ2 is a cycle of length 2.

τ3 =

(
1 2 3
2 1 3

)
= (1 2) ∴ τ3 is a cycle of length 2.

A cycle of length 2 is called as a transposition.
Thus τ1 = (2 3), τ2 = (1 3) and τ3 = (1 2) are transpositions from S3.
Remember that the transposition (n m) = (m n).

Now, if it is given that (3 2 5) ∈ S5 then the actual permutation is

(
1 2 3 4 5
1 5 2 4 3

)
.

Note that the numbers which are not present in the cycle, go to themselves.

Multiplication of two or more cycles:
Consider two cycles σ = (1 3 5 4) and τ = (2 7 6) from S8.
We want to find σ ◦ τ .
One way of doing this is to express σ and τ in their standard forms and then find the
required product i.e. σ ◦ τ.

σ =

(
1 2 3 4 5 6 7 8
3 2 5 1 4 6 7 8

)
, τ =

(
1 2 3 4 5 6 7 8
1 7 3 4 5 2 6 8

)
.

σ ◦ τ =

(
1 2 3 4 5 6 7 8
3 2 5 1 4 6 7 8

)
◦
(

1 2 3 4 5 6 7 8
1 7 3 4 5 2 6 8

)
=

(
1 2 3 4 5 6 7 8
3 7 5 1 4 2 6 8

)
.

We can also find the product without actually writing the given permutations in their

standard form. σ ◦ τ = (1 3 5 4) ◦ (2 7 6) =

(
1 2 3 4 5 6 7 8
3 7 5 1 4 2 6 8

)
.

(7) Every permutation in Sn can be expressed as a product of disjoint cycles.

For example: σ =

(
1 2 3 4 5 6 7 8
3 7 5 1 4 2 6 8

)
= (1 3 5 4) ◦ (2 7 6).

Note: A permutation can be a single cycle.

(8) Product of disjoint cycles is commutative.

(9) Every permutation is a product of disjoint cycles. This product is unique up to the order
in which the cycles appear.

(10) We will see how to find Inverse of a cyclic permutation:
Consider (1 3 5 4) ∈ S8. We want to find (1 3 5 4)−1

Just reverse the order. The answer is (4 5 3 1).
Check that (1 3 5 4) ◦ (4 5 3 1) = i the identity permutation in S8.
To find Inverse of a product of cycles:
Suppose we want to find inverse of (1 3 8 5 4)(2 3 6 4 7 5) ∈ S8

We want to find [(1 3 8 5 4)(2 3 6 4 7 5)]−1

4.5
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Method 1 Write the product of the two cycles in the standard form.

(1 3 8 5 4)(2 3 6 4 7 5) =

(
1 2 3 4 5 6 7 8
3 8 6 7 2 1 4 5

)
.

[(1 3 8 5 4)(2 3 6 4 7 5)]−1 =

(
1 2 3 4 5 6 7 8
3 8 6 7 2 1 4 5

)−1

=

(
3 8 6 7 2 1 4 5
1 2 3 4 5 6 7 8

)
=

(
1 2 3 4 5 6 7 8
6 5 1 7 8 3 4 2

)
Method 2 Use the property that (σ ◦ τ)−1 = τ−1 ◦ σ−1 for all σ, τ ∈ Sn.

[(1 3 8 5 4)(2 3 6 4 7 5)]−1 = (2 3 6 4 7 5)−1(1 3 8 5 4)−1

= (5 7 4 6 3 2)(4 5 8 3 1)

=

(
1 2 3 4 5 6 7 8
6 5 1 7 8 3 4 2

)
(11) Inverse of a transposition is itself, that is, if (p q) ∈ Sn then (p q)−1 = (q p) = (p q)

(12) A cycle (a1 a2 a3 · · · ar) of length r, can be written as (r − 1) transpositions in Sn as
follows:

(a1 a2 a3 · · · ar) = (a1 ar)(a1 ar−1)(a1 ar−2) · · · (a1 a2)

e.g. (1 3 5 4) = (1 4)(1 5)(1 3)

This representation is not unique because, we can write

(a1 a2 a3 · · · ar) = (a1 ar)(a1 ar−1)(a1 ar−2) · · · (a1 a2)

= (a1 ar)(a1 ar−1)(a1 ar−2) · · · (a1 a2)(x y)(x y)

for any x, y ∈ Nn, since (x y)(x y) = i the identity permutation.

(13) Thus every permutation can be expressed as a product of disjoint cycles and every cycle can
be expressed as a product of transpositions and hence every permutation can be expressed
as a product of transpositions.

(14) If a permutation is written as a product of r transpositions and it is also written as a
product of r′ transpositions then either r and r′ are both even or both odd.

(15) If σ ∈ Sn i.e. σ is a permutation on n symbols say {1, 2, · · · , n} then signature of σ is

denoted by sgn of σ and is given by sgn(σ) =
∏

1≤i<j≤n
σ(i)− σ(j)

i− j
where

∏
, denotes

the product.

(16) If σ is any permutation in Sn, then the sign of σ is ±1.

(17) A permutation σ of Sn is said to be an odd permutation if sgn σ = −1 and σ is said to
be an even permutation if sgn σ = 1.
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(18) A transposition is an odd permutation. i.e. sgn (a b) = −1.

(19) A cycle (a1 a2 a3 · · · ar) of length r can be written as a product of transpositions as
follows.
(a1 a2 a3 · · · ar) = (a1 ar)(a1 ar−1)(a1 ar−2) · · · (a1 − a2).
Thus a cycle of length r is written as a product of r − 1 transpositions.
Since sgn (σ ◦ τ) = sgn σ ∗ sgn τ , we have,

sgn
(

(a1 a2 a3 · · · ar)
)

= sgn
(

(a1 ar)(a1 ar−1)(a1 ar−2) · · · (a1 − a2)
)

= sgn
(

(a1 ar)
)
∗ sgn

(
(a1 ar−1)

)
∗ sgn

(
(a1 ar−2)

)
∗ · · · ∗ sgn

(
(a1 a2)

)
= (−1) ∗ (−1) ∗ · · · ∗ (−1) (r − 1 times)(sgn of a transposition = −1)

= (−1)r−1

So, signature of a cycle of length r is (−1)r−1.

(20) Cycles of even length are odd permutations and cycles of odd length are even permutations.

(21) Signature of the identity permutation is 1.

(22) sgn σ = sgn σ−1 ∀ σ ∈ Sn.

(23) If a permutation σ ∈ Sn can be written as a product of r transpositions and also a product
of r′ transpositions , then either r and r′ are both even or r and r′ are both odd. (i.e. r
and r′ have the same parity)

(24) For any integer n ≥ 2, exactly half of the permutations in Sn are odd and half are even.

(25) The set of all even permutations from Sn is denoted by An. Clearly |An| =
n!

2
.

4.5.2 PRACTICAL 2.5

(A) Objective Questions

Choose correct alternative in each of the following:

(1) Let Nn = {1, 2, · · · , n} for a positive integer n then, f : Nn → Nn is a permutation if

(a) f is one one but not onto.

(b) f is one one and onto.

(c) f is onto but not one one.

(d) f is any function.

(2) What is the number of even permutations in S3?

(a) 3 (b) 4 (c) 0 (d) 6

(3) The number of elements in Sn is

4.5
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(a) n (b) n! (c)
(n− 1)!

2
(d) 2n

(4) If α =

(
1 2 3 4 5 6 7
3 1 2 4 5 6 7

)
∈ S7 then α−1 is

(a) (1 2 3). (b) (1 2)(3 6 7). (c) (1 2 3)(5 6 7). (d) (4 5).

(5) If µ =

(
1 2 3 4 5 6
4 1 5 6 3 2

)
∈ S6 then, number of disjoint cycles in the expression of µ

as their product is

(a) 1 (b) 2 (c) 3 (d) 4

(6) How many permutations of S4 are expressed as composite of disjoint 2-cycles?

(a) 12 (b) 6 (c) 3 (d) 10

(7) Signature of identity permutation of Sn is

(a) −1 (b) 0 (c) 1 (d) depends on n.

(8) For any integer n ≥ 2, in Sn, the number of even permutations is

(a)
n

2 (b)
n!

2
(c)

n!

4
(d) none of the

above.

(9) If σ = (1 2 3)(2 3) then σ−1 is

(a) (3 2 1)(3 2). (b) (1 2). (c) (2 3). (d) (1 3).

(10) If σ = (2 5 3 4) is in S6 then, σk = I6 for what value of k

(a) 5 . (b) 2. (c) 3. (d) 4.

(11) If σ ◦ τ−1 is an odd permutation then,

(a) Both σ, τ are
odd.

(b) Both σ, τ are
even.

(c) only if σ is odd
and τ is even

(d) one of the σ, τ is
odd and other is
even.

(12) If σ is odd, then which of the following is true?

(a) σ2 is even and
σ3 is odd.

(b) σ2 is odd and
σ3 is even.

(c) both σ2 and σ3

are odd.
(d) both σ2 and σ3

are odd.

(13) How many transpositions does S7 has?
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(a)
7!

2
(b) 14 (c) 21 (d) 42

(14) How many σ ∈ S4 satisfy the equation σ2 = σ ?

(a) 1 (b) 6 (c) 9 (d) 12

(15) Signature of a cycle of length r is

(a) (−1)(r) (b) (−1)(r−1) (c) (−1)(r+1) (d) r

(16) If a permutation σ ∈ Sn Sn can be written as a product of r transpositions and also a
product of r′ transpositions, then

(a) r − r′ even (b) r − r′ odd (c) r − r′ = 0 (d) |r − r′| = 1

(17) Which of the following statements are true for An?

(i) signature of every element of An is 1.

(ii) product of any two elements of An is an element of An.

(iii) Identity element belongs to An.

(iv) inverse of every element of An belongs to An.

(a) All the four statements are true for even integer n.

(b) All the four statements are true for all integers n.

(c) i, ii are true but iii, iv are not true.

(d) i, ii and iii are true.

(18) If An be the set of all even permutations in Sn, then cardinality of An is

(a) always an even positive integer.

(b) an even positive integer for n > 3.

(c) is even only if n is even.

(d) is always an odd positive integer.

(19) The number of elements in A6 is

(a) 6 (b) 720 (c) 360 (d) 26

(B) Descriptive Questions

(1) Write down all permutations on 3 symbols {1, 2, 3}.

(2) For the following permutations α =

(
1 2 3 4 5
3 2 4 5 1

)
, β =

(
1 2 3 4 5
2 4 1 3 5

)
, γ =(

1 2 3 4 5
2 5 3 1 4

)
,

(i) Show that αβ 6= βα

4.5
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(ii) Verify α(βγ) = (αβ)γ

(iii) Verify (αβ)−1 = β−1α−1

(3) Write each of the following permutations σ = (24)(179)(48) and τ = (164)(1379)(83) from
S9 as a product of disjoint cycles and also find the product σoτ .

(4) Find the inverse of σ = (1358)(2314)(67) ∈ S8 and verify that σoσ−1 = i where i is the
identity permutation in S8.

(5) Find the inverse of each of the following permutations. Verify it is the inverse by computing
the product and showing it is the identity permutation.

(i) α =

(
1 2 3 4
3 4 2 1

)
(ii) β =

(
1 2 3 4 5 6 7 8
4 1 5 7 3 8 2 6

)

(6) Define an even permutation. Express σ =

(
1 2 3 4 5 6 7 8
8 2 6 3 7 4 5 1

)
∈ S8 as a product

of disjoint cycles. Determine whether σ is odd or even.

(7) Let α = (1325)(143)(25) ∈ S5 Find α−1 and express it as a product of disjoint cycles.
State whether α−1 ∈ A5.

(8) Find the signature of following permutation using the definition of signature. σ =

(
1 2 3 4 5
3 5 2 4 1

)
(9) Express the following as product of disjoint cycles.

(i) σ =
(
1 3

) (
1 2

) (
1 2 3

)
in S3.

(ii) σ =
(
4 3 5 1

) (
1 5 3

) (
1 5 3 4

)
in S5.

(iii) σ =
(
1 4

) (
2 3

) (
1 3

) (
2 4

) (
1 2 3 4

)
in S4.

(10) Find σ ◦ τ, τ ◦ σ, τ2, σ−1 ◦ τ2 for σ =

(
1 2 3 4 5 6
2 4 1 6 5 3

)
and τ =

(
1 2 3 4 5 6
3 5 1 6 2 4

)
.

(11) Verify that (σ◦τ)−1 = τ−1◦σ−1 for σ =

(
1 2 3 4 5 6
2 5 1 6 4 3

)
and τ =

(
1 2 3 4 5 6
3 5 2 6 1 4

)
.

(12) Find x ∈ S5 such that σ ◦ x = τ where σ =

(
1 2 3 4 5
2 5 1 3 4

)
and τ =

(
1 2 3 4 5
3 5 2 4 1

)
.

(13) Write all permutations of S3 and list all even permutations of S3.

(14) State whether the given permutations from S5 are odd or even?

(i)

(
1 2 3 4 5
4 5 2 3 1

)
.

(ii)

(
1 2 3 4 5
2 3 5 1 4

)
.

(iii) (2 3)(1 4 3)(5 3)(1 3 2 5).

(iv) (2 5)(1 3 2 4)(5 2 1)(3 4).

(15) Find the number of transpositions, 3-cycles, 4-cycles in S4. Find the remaining permuta-
tions that are not cycles but composite of cycles in S4. Further classify them into even
and odd permutations.
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(16) If α = (1 3 6 2 4)(5 8 7)(9), β = (1 5 8 6 2)(3 9 4)(7) and σ = (1)(2 6 8 9 7 4)(3 5) then,
show that σασ−1 = β.

(17) Show that (1 6)(1 3)(2 7)(2 5)(2 4) = (1 5)(3 5)(3 6)(5 7)(1 4)(2 7)(1 2). Find third
representation of this permutation as product of transpositions that is distinct from the
given two representations.

(18) State whether following permutations in S6 are odd or even.

(i) (235)(132)(13)(24513)(612435) (ii) (123)(345)(12)(1345)(3512)

(19) Write down all permutations on 4 symbols {1, 2, 3, 4}. Hence write elements of A4.

(20) Write the following permutations as product of disjoint cycles. Express as product of
transpositions and find their signature.

(i) σ =

(
1 2 3 4 5 6 7 8 9
5 4 7 1 2 8 3 9 6

)
(ii) σ =

(
1 2 3 4 5 6 7 8 9
7 3 6 5 4 2 9 8 1

) (iii) σ =

(
1 2 3 4 5 6 7 8 9
1 4 6 7 8 3 2 9 5

)

(21) Write the following permutation, σ as product of disjoint cycles and find σ−1, σ2 for the
given σ. Write whether σ, σ−1, σ2 are even or odd.

(i) σ =

(
1 2 3 4 5 6 7 8 9
4 5 1 2 3 8 9 6 7

)
(ii) σ =

(
1 2 3 4 5 6 7 8
6 3 7 5 4 8 2 1

)
(iii) σ =

(
1 3 5 2 4

) (
2 4 1

)
in S5.

(22) Show that (3 4 7 2) can be expressed as product of some transpositions of the form
(i, i+ 1) ∈ S7.

4.6 Practical 2.6: Recurrence Relations

4.6.1 Prerequisite of Practical 2.6

(1) Let h0, h1, . . . , hn . . . be a sequence of numbers.This sequence is said to satisfy a linear
recurrence relation of order k, provided that there exist quantities a1, a2, . . . , ak, with
ak 6= 0, and a quantity bn such that

hn = a1hn−1 + a2hn−2 + · · ·+ akhn−k + bn, (n ≥ k).
For example:

(i) The sequence of derangement numbers D0, D1, · · · , Dn, · · · satisfies the two re-
currence relations

Dn = (n− 1)Dn−1 + (n− 1)Dn−2, (n ≥ 2)

Dn = nDn−1 + (−1)n, (n ≥ 1)

4.6
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(ii) The Fibonacci sequence f0, f1, f2, · · · , fn, · · · satisfies the recurrence relation fn =
fn−1 + fn−2 (n ≥ 2) of order 2 with a1 = 1, a2 = 1 and bn = 0.

(iii) The factorial sequence h0, h1, . . . , hn, . . . , where hn = n! satisfies the recurrence
relation hn = nhn−1 (n ≥ 1) of order 1 with h0 = 0, h1 = h2 = 1.

(iv) The geometric sequence h0, h1, . . . , hn, . . . , where hn = rn satisfies the recurrence
relation hn = rhn−1 (n ≥ 1) of order 1 with a1 = r and bn = 0.

Note: The quantities a1, a2, . . . , ak may be constant or may depend on n. Similarly, the
quantity bn may be a constant or also may depend on n.

(2) Let h0, h1, . . . , hn . . . be a sequence of numbers.This sequence is said to satisfy a linear
homogeneous recurrence relation of order k, provided that there exist quantities
a1, a2, . . . , ak, with ak 6= 0 such that

hn = a1hn−1 + a2hn−2 + · · ·+ akhn−k, (n ≥ k).
The linear homogeneous recurrence relation is said to have constant coefficients provided
that a1, a2, . . . , ak are constants.

(3) Solving Recurrence Relations:
There are different techniques to solve a recurrence relation. Two of them are as follows:
(1) Iteration method or Backtracking.
(2) Characteristic roots.

For example:

(i) Solve the Recurrence Relation:
an = −2an−1;n ≥ 2, a1 = 3 using iteration method.
Solution:

an = −2an−1

= −2(−2an−2)

= (−2)2(−2an−3)

= (−2)3(an−3)

= (−2)k(an−k) for some k

put k = n− 1

= 3(−2)n−1

(ii) Solving a homogeneous recurrence relation of second degree using algebraic method: (Char-
acteristic Roots)
Note: We are going to discuss a method for solving linear homogeneous recurrence rela-
tions with constant coefficients that is, recurrence relations of the form

hn = a1hn−1 + a2hn−2. (n ≥ 2) (∗)
where a1, a2 are constants and a2 6= 0.

The polynomial equation xk − a1x
k−1 − a2x

q−2 − · · · − ak = 0, is called the char-
acteristic equation of the recurrence relation hn − a1hn−1 + a2hn−2 + · · · + akhn−k =
0, (ak 6= 0, n ≥ k).
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Let q be a nonzero number. Then hn = qn is a solution of the linear homogeneous recur-
rence relation

hn − a1hn−1 − a2hn−2 = 0, (a2 6= 0, n ≥ 2) (∗)
with constant coefficients if and only if q is a root of the polynomial equation
x2 − a1x− a2 = 0. (∗∗)
If the characteristic equation x2 − a1x− a2 = 0 of the recurrence relation
hn = a1hn−1 + a2hn−2 (∗) has two distinct non-zero roots q1 and q2 then hn =
c1q

n
1 +c2q

n
2 is the general solution of the recurrence relation hn = a1hn−1+a2hn−2.

If the characteristic equation x2 − a1x − a2 = 0 of the recurrence relation hn =
a1hn−1 + a2hn−2 (∗) has a single non-zero root q1, then the general solution
of (∗) is hn = c1q

n
1 + c2nq

n
1 .

For example:

(i) Solve the recurrence relation hn = 4hn−1 + 5hn−2, h0 = 2, h1 = 6.
Solution: The characteristic equation associated with the given recurrence relation is x2−
4x− 5 = 0
The roots of the equation are q1 = 5, q2 = −1
The two roots are distinct.
∴ the general solution of hn = 4hn−1 + 5hn−2 is hn = c15n + c2(−1)n

Now we want to find c1, c2 such that h0 = 2, h1 = 6.
2 = h0 = c1 + c2 =⇒ c1 + c2 = 2 (1)
6 = h1 = c1 ∗ q1 + c2 ∗ q2 = 5c1 − c2 =⇒ 5c1 − c2 = 6 (2)

Adding the two equations, 6c1 = 8 =⇒ c1 =
4

3
.

c2 = 2− 4

3
=

2

3
.

∴ hn =
4

3
5n +

2

3
(−1)n.

(ii) Find the general solution of the recurrence relation hn−4hn−1 + 4hn−2 = 0, (n ≥ 2), h0 =
1, h1 = 6 using the characteristic equation.

Solution: The characteristic equation of this recurrence relation is x2 − 4x+ 4 = 0
The roots of the equation are q1 = 2, q2 = 2.
So, the roots are repeated.
∴ the general solution of hn − 4hn−1 + 4hn−2 = 0 is hn = c1 2n + c2 n 2n.
We find c1 and c2 such that h0 = 1, h1 = 6.

c120 + c2 ∗ 0 ∗ 20 = h0 = 1

c1 = 1 (∗)
c121 + c2 ∗ 1 ∗ 21 = h1 = 6

1 ∗ 2 + 2c2 = 6

c2 = 2 (∗∗)

Hence the solution of hn − 4hn−1 + 4hn−2 = 0, h0 = 1, h1 = 6 is
hn = 1 ∗ 2n + 2 ∗ n2n = 2n + n2n+1 n ≥ 0

4.6
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4.6.2 PRACTICAL 2.6

(A) Objective Questions

Choose correct alternative in each of the following:

(1) For the sequence 1, 7, 25, 79, 241, 727, . . . , simple formula for (an) is

(a) 3n+2 − 2 (b) 3n − 2 (c) −3n + 4 (d) n2 − 2

(2) For the sequence an = 6(1/3)n, a4 is

(a)
2

25
(b)

2

27
(c)

2

19
(d)

2

13

(3) The recurrence system with initial condition a0 = 0 and recurrence relation an = an−1 +
2n− 1 is linear of

(a) degree two and non-homogeneous.

(b) degree one and non-homogeneous.

(c) degree one and homogeneous.

(d) None of these

(4) Fibonacci Numbers with f0 = 1, f1 = 1 fibonacci recurrence relation fn = fn−1 + fn−2 is
linear of

(a) degree one and homogeneous

(b) degree two and non-homogeneous

(c) degree two and homogeneous

(d) None of these

(5) The recurrence relation for the number of ways to arrange n distinct objects in a row is

(a) hn = hn−1 + n, h1 = 1

(b) hn = nhn−1, h1 = 1

(c) hn = nhn−1, h1 = 0

(d) None of these

(6) An elf has a staircase of n stairs to climb. Each step it takes can cover either one stair or
two stairs . A recurrence relation for hn, the number of different ways for the elf to ascend
the n−stairs staircase is given by

(a) hn = nhn−1+hn−2, h1 = 1, h2 = 2, n ≥
3.

(b) hn = hn−1 + hn−2, h1 = 1, h2 = 2, n ≥
3.

(c) hn = hn−1+nhn−2, h1 = 1, h2 = 2, n ≥
3.

(d) None of these

(7) Consider the recurrence relation an = −8an−1− 15an−2 with initial conditions a0 = 0 and
a1 = 2. Which of the following is an explicit solution to this recurrence relation?

(a) an = (−3)n + (5)n

(b) an = n(−3)n + n(5)n
(c) an = n(−3)n + (5)n

(d) None of these
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(8) Consider the recurrence relation an = 6an−1 − 9an−2 with initial conditions a0 = 0 and
a1 = 2. Which of the following is an explicit solution to this recurrence relation, provided
the constants A and B are chosen correctly?

(a) an = A3n +B3n

(b) an = A3n +B(−3)n
(c) an = A3n + nB3n

(d) an = A(−3)n +B(−3)n

(9) Consider the recurrence relation an = 2an−1 with initial conditions n ≥ 1 and a0 = 3.
Which of the following is an explicit solution to this recurrence relation?

(a) an = 3.2n (b) an = 2.3n (c) an = 3.n2 (d) None of these

(10) Let the characteristic equation x2−a1x−a2 = 0 of the recurrence relation hn = a1hn−1 +
a2hn−2 has two roots q1 and q2. If hn = c1q

n
1 +c2q

n
2 is the general solution of the recurrence

relation of hn = a1hn−1 + a2hn−2 then q1 and q2 are

(a) Equal and non-zero

(b) Distinct

(c) non-zero

(d) None of these

(11) Let the characteristic equation x2−a1x−a2 = 0 of the recurrence relation hn = a1hn−1 +
a2hn−2 has two roots q1 and q2. If hn = c1q

n
1 + c2nq

n
2 is the general solution of the

recurrence relation of hn = a1hn−1 + a2hn−2 then q1 and q2 are

(a) Equal and non-zero

(b) Distinct and non-zero

(c) Equal

(d) None of these

(12) The characteristic polynomial corresponding to the recurrence hn = −25hn−1 + 54hn−2 is

(a) 25x2 − 54x+ 1 (b) −25x2 + 54x (c) x2 + 25x− 54 (d) x2 − 25x+ 54

(13) The characteristic polynomial corresponding to the recurrence hn = 2hn−1−hn−2+13hn−3

is

(a) 2x2 − x+ 13 (b) −2x2 + x− 13 (c) x3−2x2 +x−13 (d) x3 +2x2−x+13

(14) A recursive linear homogeneous system of order k has

(a) exactly k characteristic roots.

(b) exactly k − 1 characteristic roots.

(c) exactly k distinct characteristic roots.

(d) may not have any characteristic roots.

(B) Descriptive Questions

(1) Find the recurrence relation for the number of ways to arrange n distinct objects in a row.

(2) An elf has a staircase of n stairs to climb. Each step it takes can cover either one stair or
two stairs . Find a recurrence relation for hn; the number of different ways for the elf to
ascend the n−stairs staircase.

4.6
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(3) Find the recurrence relation and give initial conditions for the number of binary strings of
length n, that do not have two consecutive 0′s.

(4) Find a recurrence relation for hn, the number of n−digit ternary sequences without any
occurrence of the subsequence ′012′.

(5) Suppose we draw n straight lines on a piece of paper so that every pair of lines intersect
(but no three lines intersect at a common point). Into how many regions do these n lines
divide the plane.

(6) Words of length n using only three letters a, b, c are to be transmitted over a communication
channel subject to the condition that no word in which two a’s appear consecutively is to
be transmitted. Give a recurrence relation for the number of words of length n allowed by
the communication channel and solve it.

(7) A young pair of rabbits (one of each gender) is placed on an island. A pair of rabbits does
not breed until they are 2 months old. After they are 2 months old, each pair of rabbits
produces another pair each month. Find a recurrence relation and solve it for the number
of pairs of rabbits on the island after n months, assuming that no rabbits ever die.

(8) The Tower of Hanoi consists of three pegs mounted on a board together with disks of
different sizes. Initially these disks are placed on the first peg in order of size, with the
largest at the bottom. The rules of the puzzle allow disks to be moved one at a time from
one peg to another as long as a disk is never placed on top of a smaller disk.The goal of
the puzzle is to have all the disks on the second peg in order of size, with the largest at
the bottom. Let Hn denote the minimum number of moves needed to solve the Tower of
Hanoi problem with n disks. Set up a recurrence relation for the sequence {Hn} and solve
it by back-tracking.

(9) Solve the following recurrence relations using iteration method.

(i) an = −2an−1;n ≥ 2, a1 = 3

(ii) an = 3an−1 + 7;n ≥ 2, a1 = 5

(iii) an = an−1 + 3, a1 = 2.

(10) Solve the following linear homogeneous recurrence relations by using characteristic equa-
tion.

(i) hn = 5hn−1 − 6hn−2;h0 = 1, h1 = 0

(ii) hn − 4hn−1 + 4hn−2 = 0;n ≥ 2, h0 = 1, h1 = 6

(iii) hn − 6hn−1 + 9hn−2 = 0;n ≥ 2, h0 = 1, h1 = 6

(iv) hn = 2hn−1 + hn−2 − 2hn−3;n ≥ 3, h0 = 1, h1 = 2, h2 = 0
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(v) hn = hn−1 + hn−2;n ≥ 2, h0 = 0, h1 = 1

(vi) hn = 6hn−1 − 11hn−2 + 6hn−3, h0 = 2, h1 = 5, h2 = 15

(11) Solve the following linear non-homogeneous recurrence relations.

(i) hn = 3hn−1 − 4n;h0 = 2 (ii) hn = 3hn−1 + 2n;h0 = 3

(12) A bank pays 8% interest each year on money in the savings account. Find a recurrence
relation for the amounts of money a person would have after n years if it follows the
investment strategy of (a) investing 1000 and leaving it in the bank for n years. (b)
investing 1000 at the end of each year.

(13) A child has n rupees. Each day he buys either milk for Re. 1/− or Orange juice for Rs.
2/− or Pineapple juice for Rs.2/−. If hn denotes the number of ways of spending all the
money, find the recurrence relation for this sequence. In how many ways can he spend Rs.
7?

4.7 Practical 2.7: Miscellaneous theory questions

4.7.1 Miscellaneous theory questions from UNIT I

(1) Let m be a natural number. Show that the following statement is true for every natural
number n: If there is an injective function from Nn to Nm, then n ≤ m.

(2) Let A be a nonempty set, let n ∈ N . Show that the following statements are equivalent:

(a) There is a surjective function f : Nn −→ A.

(b) There is an injective function g : A −→ Nn .

(c) A is finite and |A| ≤ n.

(3) If X,Y are finite sets and there is an injective function f : X → Y then show that
|X| ≤ |Y |.

(4) If the set S is such that there is a bijection b : N→ S then Show that S is infinite.

(5) Let A be a nonempty set. Show that the following are equivalent:

(a) There is a surjective function f : N −→ A.

(b) There is an injective function g : A −→ N.
(c) A is countable (that is finite or countably infinite).

(6) Show that the set Z of all integers is countably infinite.

(7) Show that every infinite subset of N is countably infinite.

(8) If A,B are countable sets then A×B is also countable.

(9) If A1, A2 are countable then A1 ∪A2 is also countable.

(10) State and prove Addition Principle and Multiplication Principle of Counting.

4.7
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(11) Let X and Y be finite non-empty sets, and S be a subset of X × Y. Let Rx(S) be the set
of pairs in S whose first coordinate is x and Cy(S) be the set of pairs in S whose second
coordinate is y. Then prove the following.

(a) The size of S is given by |S| =
∑

x |Rx(S)| =
∑

y |Cy(S)|.
(b) If |Rx(S)| is a constant r, independent of x and |Cy(S)| is a constant c, independent

of y, then r|X| = c|Y |.

(12) Show the number of ways of putting n balls of distinct colours into k distinct boxes with
each box containing at least one ball is k!S(n, k), where S(n, k) is the Stirling number of
second type.

(13) Let n and k be positive integers. Show that the number of surjective functions from an
n−set to a k−set is equal to k!S(n, k), where S(n, k) is the Stirling number of second type.

(14) Let n and m be positive integers and k be an integer such that 1 ≤ k ≤ m. Prove that

the number of functions from a n-set to a m-set is mn =
∑m

k=1

(
m
k

)
k!S(n, k).

(15) Define Stirling number S(n, k) of second kind. Let n and k be positive integers with n ≥ k.
Show that S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

(16) For all n ≥ 2. Show that S(n, 2) = 2n−1 − 1.

4.7.2 Miscellaneous theory questions from UNIT II

(1) State and prove Binomial Theorem.

(2) Let n be a non-negative integer. Show that

(x+ y)n =

(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·+

(
n
n

)
yn.

(3) Define multinomial coefficient. Let S be an n-set and suppose the n objects in S are to
be put in r distinct boxes B1, B2, . . . , Br such that the ith box Bi contains ni objects with
n1 + n2 + · · ·+ nr = n. Show that the number of ways of doing this is equal to(

n
n1, n2, . . . , nr

)
=

n!

n1!n2! . . . nr!
.

(4) State and prove Multinomial theorem.

(5) Let n be a non-negative integer. Show that

(x1 + x2 + · · ·+ xr)
n =

∑
n1+n2+···+nr=n

(
n

n1, n2, . . . , nr

)
xn1

1 xn2
2 . . . xnrr

where the summation extends over all nonnegative integers n1 + n2 + · · ·+ nr = n.

(6) Let n and k be positive integers. Show that

(
n
k

)
=

(
n− 1
k

)
+

(
n− 1
k − 1

)
.
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(7) Let S be a multi-set consisting of k distinct objects, each with infinite multiplicity. Show
that the total number of r-permutations of S is kr.

(8) Let S be a multi-set with k distinct objects with finite repetition numbers n1, n2, . . . , nk
respectively. If the size of S is n = n1 + n2 + · · · + nk, then show that the number of
permutations of S equals n!

n1!n2!...nk! .

(9) Prove that the number of circular r-permutations of a set of n elements is given by P (n,r)
r =

n!
r∗(n−r)! .

(10) For 0 ≤ r ≤ n, Prove that P (n, r) = r! ∗
(
n
r

)
. Hence prove that

(
n
r

)
=

n!

r! ∗ (n− r)!

(11) Let S be a multi-set with objects of k different types each with an infinite repetition
number (multiplicity). Show that the number of r-combinations of S equals(

r + k − 1
r

)
=

(
r + k − 1
k − 1

)
.

(12) Show that the number of ways of putting r identical objects into k distinct boxes with

each box containing at least one object is

(
r − 1
k − 1

)
.

(13) State and prove Inclusion-Exclusion principle.

(14) Show that the number of derangements Dn of {1, 2, . . . , n} is given by

Dn =

{
1

0!
− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!

}
.

(15) Let n ≥ 2 be an integer whose prime factorization is n = pα1
1 pα2

2 . . . pαrr where αi ≥ 1,
∀i, 1 ≤ i ≤ r, prove that

φ(n) = n

(
1− 1

p1

)(
1− 1

p21

)
. . .

(
1− 1

pr

)
.

4.7.3 Miscellaneous theory questions from UNIT III

(1) In Sn, if the pair of cycles α = (a1 a2 . . . am) and β = (b1 b2 . . . bt) have no entries in
common, then show that αβ = βα.

(2) Define signature of a permutation. If σ is any permutation in Sn, then show that the sign
of σ is ±1.

(3) If a permutation σ ∈ Sn can be written as a product of r transpositions and also a product
of r′ transpositions, then show that either r and r′ are both even or r and r′ are both odd.
(i.e. r and r′ have the same parity).

4.7
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(4) Prove that, for any integer n ≥ 2, exactly half of the permutations in Sn are odd and half
are even.

(5) If α, β ∈ Sn, then show that sgn(αβ) = sgn(α).sgn(β).

(6) Prove that for n > 1, An has order n!
2 .

(7) Define linear homogeneous recurrence relation. Let q be a nonzero number. Show that
hn = qn is a solution of the linear homogeneous recurrence relation

hn − a1hn−1 − a2hn−2 − · · · − akhn−k = 0, (ak 6= 0, n ≥ k)− (1)

with constant coefficients if and only if q is a root of the polynomial equation xk−a1x
k−1−

a2x
k−2 − · · · − ak = 0 − (2). Hence prove that if the polynomial equation has k distinct

roots q1, q2, . . . , qk then hn = c1q
n
1 + c2q

n
2 + · · ·+ ckq

n
k is the general solution of (1).

(8) Show that if the characteristic equation x2 − a1x − a2 = 0 of the recurrence relation
hn = a1hn−1 + a2hn−2 has two distinct non-zero roots q1 and q2 then hn = c1q

n
1 + c2q

n
2 is

the general solution of the recurrence relation of hn = a1hn−1 + a2hn−2.

(9) Show that if the characteristic equation x2 − a1x − a2 = 0 of the recurrence relation
hn = a1hn−1 +a2hn−2 has a single non-zero roots q1 then hn = c1q

n
1 + c2nq

n
2 is the general

solution of the recurrence relation of hn = a1hn−1 + a2hn−2.

(10) Let h0, h1, . . . , hn is a sequence of real numbers. When do we say that this sequence satisfies
a linear recurrence relation of order k? Also show that there exist constants c1, c2, . . . , ck
such that hn = c1q

n
1 + c2q

n
2 + · · · + ckq

n
k satisfies h0 = b0, h1 = b1, . . . , hk−1 = bk−1 where

q1, q2, . . . , qk are distinct real numbers and b0, b1, . . . , bk−1 are any k real numbers.

xxxxxxxxxxxx
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Index

α− δ condition , 100
β − δ condition , 100
ε− neighbourhood , 17
nth power , 9
nth root , 9
nth term, 24
nth -order derivative , 124
r−combination , 158
r−permutation, 157
rth power , 10
Absolute value function, 62
Addition Principle, 148
Algebra of Continuous functions, 102, 142
Algebra of Differentiable Functions, 118
Algebra of Limits:, 98
Algebra of Polynomials, 82
Archimedean property, 19
Arithmetic Mean, 10
Bijective function, 63
Binary Operation, 72
Binomial Theorem, 156
Bolzano-Weierstrass Theorem, 111
Caratheodory Lemma, 118
Cartesian Product, 61
Cauchy sequence, 32
Cauchy’s Mean Value Theorem, 127
Cauchy-Schwarz Inequality, 10
Ceiling function, 62
Chain Rule, 118
Characteristic function, 62
Circular Permutations, 158
Closure, 7
Combinations of Multi-sets, 158
Combinations of Sets, 158
Composite function, 63
Concave, 135
Convex, 135
Critical point:, 135
Cyclic notation, 166
Differentiability of Inverse Function, 118

Differential Equation:, 36
Dirichlet function , 101
Divisibility in F [x], 83
Division Algorithm in F [x], 83
Division Algorithm , 51
Equality of two functions, 63
Equations reducible to the linear form ,

38
Equivalence Class, 73
Equivalence Relation, 73
Essential discontinuity, 102
Euclid’s Lemma, 52
Euclid’s Theorem, 56
Euclidean Algorithm, 84
Euler’s function φ, 163
Exact differential equation, 37
Factor Theorem, 84
Fibonacci sequence, 174
First Derivative Test for Local Maximum,

136
First Derivative Test for Local Minimum,

136
Floor function, 62
Function, 62
Fundamental Theorem of Arithmetic, 56
General Ordinary differential equation,

36
Geometric Mean, 10
Greatest Common Divisior in F [x], 84
Greatest Common Divisor, 51
Hausdorff Property, 17
Identity function, 62
Implicit functions:, 118
Injective or one-one function , 62
Interior point, 17
Intermediate Value Property:, 111
Intermediate Value Theorem, 111
Inverse function, 64
Irreducible Polynomial, 88
Lagrange’s Mean Value Theorem, 127
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Laws of exponents, 9

Laws of indices, 9

Least common multiple, 52

Left (hand) derivative , 117

Left-hand Limit:, 98

Leibniz Rule , 125

Length of a cycle, 167

Limit Point, 97

Limit point, 17

Linear ordinary differential equation, 36,
38

Local Maximum, 135

Local Minimum: , 136

Maclaurin series, 134

Monotonic function, 128

Monotonically decreasing function, 127

Monotonically increasing function, 127

Multiplication of two or more cycles, 167

Necessary Condition for a Point of In-
flection:, 135

Order properties of R:, 8

Order, 36

Ordinary differential equation, 36

Orthogonal Trajectory, 42

Partial differential equation, 36

Partition of a set, 73

Pascal Identity, 157

Permutations of Multisets, 158

Point of Inflection, 135

Polynomial, 81

Product Set, 148

Projection function, 62

Reflexive, 73

Remainder Theorem, 84

Removable discontinuity, 102

Right (hand) derivative , 117

Right-hand Limit:, 99

Rolle’s Theorem, 127

Rules for finding integrating factors., 37

Sandwich Theorem for limit of a func-
tion, 98

Sandwich Theorem for sequences, 27

Second Derivative Test for Local Maxi-
mum, 136

Second Derivative Test for Local Mini-
mum, 136

Sequential Continuity, 110

Simplest form of the Pigeonhole Princi-
ple, 152

Stirling number of second kind , 152
Strict Local Maximum, 136
Strict Local Minimum, 136
Strictly decreasing, 128
Strictly increasing:, 128
Strong pigeonhole principle, 153
Sufficient condition for a Point of Inflec-

tion: , 135
Surjective or onto function, 63
Symmetric, 73
Taylor series, 134
Taylor’s Polynomial of f around a, 135
Taylor’s Theorem: (Lagranges form of

remainder), 134
The Inclusion-Exclusion Principle, 162
The LUB axiom or Order Completeness

of R or Completeness axiom:, 18
The Multiplication Principle, 148
Thomae function, 101
Transitive,, 73
Trichotomy Law, 8
Two way counting theorem, 148
Unique Factorization Theorem, 89
absolute value, 10
additive identity, 7
additive inverse, 7
associative, 7, 72
bounded above, 17, 26
bounded below, 17, 26
bounded , 18, 26
cardinality, 147
characteristic equation, 174
closed, 72
codomain, 62
coefficients, 81
commutative, 7, 72
composite, 56
concave downward on I, 135
concave upward on I, 135
congruent modulo , 56
constant polynomial, 82
continuous, 100
convergent, 25
converges, 25
countable, 148
countably infinite, 148
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cubic , 82
degree , 81
degree, 36
deleted ε− neighbourhood, 17
denumerable, 148
derangement , 162
derangements, 163
derangement, 173
derivative , 117
derivative, 117
differentiable, 116, 117
discontinuous, 101
distributive, 7
divergent, 25
divisible, 51
domain, 62
doubling time., 42
even permutation, 168
factorial sequence, 174
factor, 83
finite, 147
geometric sequence, 174
greater than or equal to, 8
greater than , 8
greatest lower bound, 18
homogeneous , 36
identity element, 72
identity permutation, 166
image , 62
infimum, 18
infinitely differentiable, 125
infinite, 147
integrating factor , 37
inverse, 72
leading coefficient, 81
least upper bound, 18
left (hand) limit, 98
less than or equal to, 8
less than, 8
limit , 25, 97
linear congruence, 57
linear homogeneous recurrence relation,

174
linear recurrence relation, 173
linear, 82
lower bound, 17
maximum, 18
minimum, 18

monic, 81
monotonically decreasing , 31
monotonically increasing, 31
monotonic, 31
multinomial coefficient, 156
multiplicative identity, 7
multiplicative inverse, 7
multiplicity , 86
not bounded above , 17
not bounded below, 18
odd permutation, 168
oscillate., 26
partition, 152
permutation, 166
population growth, 42
pre-image, 62
prime number, 56
quadratic, 82
range , 62
reducible, 88
relation, 61, 72
relatively prime, 52
right (hand) limit, 99
root of f(x), 86
second -order derivative , 124
second derivative, 124
sequence, 24
set of terms, 24
signature , 168
subsequence, 32
supremum, 18
tends, 25, 26
third -order derivative , 124
thrice differentiable , 124
transposition., 167
twice differentiable, 124
unbounded above, 17
unbounded below, 18
unbounded, 26
uncountable, 148
upper bound, 17
zero of f(x), 86
L’Hôpital’s Rule, 128
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